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Electrons have played a significant role in the development of many fields of physics during the last century.
The interest surrounding them mostly involved their wave-like features prescribed by the quantum theory. In
particular, these features correctly predict the behaviour of electrons in various physical systems including
atoms, molecules, solid-state materials, and even in free space. Ten years ago, new breakthroughs were
made, arising from the new ability to bestow orbital angular momentum (OAM) to the wave function of
electrons. This quantity, in conjunction with the electron’s charge, results in an additional magnetic property.
Owing to these features, OAM-carrying, or twisted, electrons can effectively interact with magnetic fields
in unprecedented ways and have motivated materials scientists to find new methods for generating twisted
electrons and measuring their OAM content. Here, we provide an overview of such techniques along with an
introduction to the exciting dynamics of twisted electrons.
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I. INTRODUCTION

The analysis of physical entities through their influence on
the trajectories of particles has long been of vital importance
in various areas of classical physics. The ability to do so arises
from the deterministic nature of the equations of motion (via
Newtonian or Lagrangian mechanics), which allows the com-
plete reconstruction of the underlying physics of a system by
analyzing the trajectories of particles in motion. This scheme
is used in various applications, such as mass spectrometers
and alike. However, such an analysis is quickly rendered ob-
solete in scenarios where effects related to quantum mechan-
ics become relevant. More specifically, these effects are a re-
sult of complementarity, which states that quantum objects are
defined by properties that cannot be simultaneously observed
with full certainty, such as position and momentum. Hence,
the trajectories of particles are not deterministic anymore, and
such an analysis becomes cumbersome.

A quantum object is additionally described by a wave na-
ture associated with its wave function, Ψ(r), which satisfies
the Schrödinger equation. The limitations of the aforemen-
tioned classical analysis are associated with the probabilistic
nature of the measurement process. Namely, one cannot in a
single measurement determine the wave function Ψ(r); one
cannot determine its Fourier transform Ψ(p) describing the
distribution of the momentum variable conjugate to position.
The probability of finding the particle at position r within a
volume d3r is given by |Ψ(r)|2 d3r. Likewise, the probabil-
ity that the particle has the momentum p within a momentum
space volume d3p is given by |Ψ(p)|2 d3p [1]. Consequently,
the complete physical description of the object is contained
within its wavefunction, and can be extracted from it with the

proper operators. In some specific cases, a wavefunction ψ
can satisfy the equation Âψa = aψa for a given operator Â.
Here, ψa and a are said to be an eigenfunction and an eigen-
value of the operator Â, respectively; i.e. the object defined by
ψa is associated with an Â value of a.

Besides providing insight on the physical traits of quantum
systems, such operators are also used to analyze the evolution
of a system’s wavefunction. Such operators most notably in-
clude the Hamiltonian, the linear momentum, and the angular
momentum operators which respectively allow to predict the
time-evolution of the wavefunction as well as translations and
rotations in space. The Hamiltonian is perhaps the most fa-
miliar of the three as its eigenvalues happen to be those of the
Schrödinger equation and provide the energy values defining
the system. The linear momentum is also fairly known due
to its frequent appearance in the formulation of wavepackets.
As for angular momentum, due to its association with rota-
tional symmetry, it is frequently encountered when construct-
ing the eigenfunctions of rotationally-symmetric systems such
as those involving atomic potentials. However, the properties
of this operator do not necessarily restrict the usefulness of
angular momentum to rotationally symmetric scenarios. In
fact, angular momentum can also be of relevance in cases in-
volving wavepackets linked to the momentum operator. As
later demonstrated in the following section, the free-particle
Schrödinger equation allows for Gaussian wavepacket solu-
tions defined by a certain momentum spread that is centered
around a certain momentum value. However, when the wave-
function consists of momentum components oriented along
the azimuth of the wavepacket’s propagation, it also carries
orbital angular momentum (OAM). Therefore, in addition to
linear motion attributed to its longitudinal momentum, a cer-
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tain form of azimuthal motion will be bestowed upon the
wavepacket as well. When this wavepacket is associated with
a charged particle, this form of azimuthal motion gets directly
translated to magnetic properties. Because these properties
are directly related to those of the wavefunction, any modi-
fication to these magnetic properties caused by external per-
turbations will be reflected in corresponding variations in this
entity’s wavefunction. In principle, these variations can be ex-
tracted by means of methods used to perform measurements
on waves, which could involve interference or holography for
instance, in order to provide information on what perturbed
the wavepacket. Hence, charged wavepackets that carry OAM
have the ability to probe multiple sources of perturbation.

In recent years, there has been significant progress in using
electron wavepackets for such purposes [2–5]. Here, we pro-
vide an overviewof the underlying attributes pertaining to the
quantum formulation of free electrons carrying OAM and how
they are modified by the presence of external electromagnetic
fields. We also discuss recent advances regarding the gen-
eration and the detection of such wavefunctions along with
applications.

II. FORMULATION OF FREE ELECTRONS

We proceed with the construct of free electron wavefunc-
tions Ψ(r; t) carrying OAM. These wavefunctions must first
and foremost satisfy the free-particle Schrödinger equation
given by

−
~2

2me
∇

2Ψ(r; t) = i~
∂

∂t
Ψ(r; t), (1)

where ∇2 is the Laplacian, ~ = 1.05 × 10−34 J · s and
me = 9.11 × 10−31 kg are the reduced Planck constant
and the rest mass of the electron, respectively. Let us now
assume that our electrons possess a well-defined central en-
ergy E0 and hence a momentum p0 = (2meE0)1/2. Based
on this consideration, the formulation of the wavefunction
is reduced to Ψ(r; t) = ψ(r) exp(−iE0t/~), thus allowing us
to transition towards the time-independent Schrödinger equa-
tion. In this case, the latter reduces to the Helmholtz equation
(∇2 + k2)ψ(r) = 0, where k2 = 2meE0/~

2. Alternatively, this
result can also be obtained within a good approximation from
the Dirac equation, a relativistic version of the Schrödinger
equation, and the corrected energy-momentum dispersion re-
lation,

k2 =
2meE0

~2

(
1 +

E0

2mec2

)
, (2)

where c is the speed of light in vacuum.
The explicit solutions to this equation will be discussed

in the following sections. Before doing so, we will pro-
vide a brief description of the features that should describe
them and how they manifest themselves into exotic proper-
ties. We must first pick a convenient coordinate system that
accurately reflects the symmetry of electrons carrying OAM.

In particular, we are looking to formulate a wavepacket prop-
agating along a longitudinal direction defined by transverse
azimuthal momentum components. This consideration sug-
gests that the solutions should be expressed in terms of cylin-
drical coordinates (ρ, ϕ, z). The next step in formulating the
wavefunction of a twisted electron is to ensure that they carry
OAM, i.e. that they are eigenstates of an OAM operator. The
fact that these wavepackets have a well defined longitudinal
propagation, i.e. the z axis, implies that the z component
of the OAM operator L̂ should represent the OAM carried
by the electron. In cylindrical coordinates, this operator is
given by L̂z = −i~(r × ∇)z = −i~ ∂ϕ. It thus follows that
the eigenstates of this operator must clearly have the form
ψ(r) = f (ρ, z) exp(i`ϕ), where f is a function of the radial and
longitudinal coordinates and ` is an integer that ensures that
ψ(r) is single-valued for all values of ϕ. The OAM eigenval-
ues of these states are ~`, which implies that electrons defined
by these wavefunctions carry quantized OAM values of ~`.
The final step is to connect these OAM eigenstates to those of
the Schrödinger equation. Namely, given that the free particle
Hamiltonian describing electrons is azimuthally symmetric, it
can be expected to commute with L̂z, thus implying that the
two operators can share the same eigenstates. Therefore, not
only do solutions of the form ψ(r) = f (ρ, z) exp(i`ϕ) carry
OAM, but they can also satisfy the Schrödinger equation and
thus provide a general form describing the wavefunctions of
twisted electrons.

A quick glance at the dynamics of such wavefunctions
can also be taken by examining its probability density cur-
rent j = − i~(ψ∗∇ψ − ψ∇ψ∗)/2me. As mentioned ear-
lier, OAM relates to the relative azimuthal motion of the
wavepacket and should therefore be related to the ϕ compo-
nent of the probability current. A quick calculation reveals
that jϕ = ~`| f (ρ, z)|2/meρ, thus verifying that there is indeed
a form of quantized azimuthal motion in a twisted electron’s
wavefunction that is directly proportional to its OAM eigen-
value. Moreover, because electrons are charged entities, this
probability current locally manifests itself as a loop of electri-
cal current which in turn causes the electron itself to acquire
magnetic attributes. One of the most useful of these proper-
ties consists of a magnetic dipole moment, whose direction
and amplitude depends on the sign and the absolute value of
`, respectively. As discussed in later sections, it is this trait
that allows twisted electrons to be generated, detected, and ap-
plied in ways that cannot be extended to other types of OAM-
carrying waves.

A. Bessel electron beams

The complete solution describing twisted electrons can be
obtained by solving the Helmholtz equation in cylindrical co-
ordinates by using separation of variables. Its solutions take
the form ψBessel

`,kρ
(ρ, ϕ, z) ∝ J|`|(kρρ) exp (ikzz) exp (i`ϕ), where

` is an integer, J|`|(·) is the `th order Bessel function of the
first kind, and kρ and kz are respectively the radial and z-
oriented components of the wavefunction’s wavevector such
that k2

ρ + k2
z = k2, e.g. see [6]. As expected from previous
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equation and thus provide a general form describing the
wavefunctions of twisted electrons.

A quick glance at the dynamics of such wavefunctions
can also be taken by examining its probability density
current j = − i!(ψ∗∇ψ−ψ∇ψ∗)/2me. As mentioned
earlier, OAM relates to the relative azimuthal motion of
the wavepacket and should therefore be related to the ϕ
component of the probability current. A quick calcula-
tion reveals that jϕ = !ℓ

∣∣f (ρ, z)
∣∣2 /meρ, thus verifying

that there is indeed a form of quantized azimuthal mo-
tion in a twisted electron’s wavefunction that is directly
proportional to its OAM eigenvalue. Moreover, because
electrons are charged entities, this probability current
locallymanifests itself as a loop of electrical currentwhich
in turn causes the electron itself to acquire magnetic
attributes. One of the most useful of these properties
consists of a magnetic dipole moment, whose direction
and amplitude depends on the sign and the absolute value
of ℓ, respectively. As discussed in later sections, it is
this trait that allows twisted electrons to be generated,
detected, and applied in ways that cannot be extended to
other types of OAM-carrying waves.

2.1. Bessel electron beams

The complete solutiondescribing twisted electrons canbe
obtained by solving theHelmholtz equation in cylindrical
coordinates by using separation of variables. Its solu-
tions take the formψBessel

ℓ,kρ (ρ,ϕ, z) ∝ J|ℓ|(kρρ) exp (ikzz)
exp (iℓϕ), where ℓ is an integer, J|ℓ|(.) is the ℓth order
Bessel function of the first kind, and kρ and kz are re-
spectively the radial and z-oriented components of the
wavefunction’s wavevector such that kρ 2 + kz 2 = k2 ,
e.g. see [6 ]. These wavefunctions are often referred to as
Bessel electron beams. As expected from previous discus-
sions, these solutions include an exp (iℓϕ) term in their
formulation thus implying that they carry OAM. Bessel
beams also have a distinct doughnut-shaped transverse
profile caused by the presence of the Bessel function in
their formulation. These transverse profiles can be found
in Figure 1 .

Though it appears at first glance that we have found
a suitable wavefunction to describe OAM-carrying elec-
trons, a closer inspection of its probability density func-
tion, PBessel =

∣∣∣%Bessel
ℓ,kρ (r; t)

∣∣∣
2

=
∣∣∣ψBessel
ℓ,kρ (r)

∣∣∣
2
, reveals

that it suffers from certain unphysical aspects. This prob-
ability density is explicitly given byPBessel =

∣∣J|ℓ|(kρ ρ)
∣∣2

and has no dependence whatsoever neither on time, ϕ,
nor z. This directly implies that the probability of finding
the travelling electron at position r does not vary with
time nor position on the axis along which its wavefunc-
tion propagates. There are even more traits that add to

Figure 1. Transverse profile of Bessel electron waves. (a)
Transverse probability density function of Bessel beams ψBessel

ℓ,kρ
and (b) their corresponding transverse phase profiles plotted in
hue colours.

this solution’s unphysical behaviour. Unlike along the
z direction, PBessel varies with the radial coordinate thus
implying that the probability of finding the electron varies
with its transverse position and holds cylindrical sym-
metry. The latter vanishes at certain radii ρn = xℓ,n/kρ ,
where xℓ,n is the nth zero of J|ℓ|(.), i.e. J|ℓ|(xℓ,n) = 0. This
spatial probability distribution thereby forms an infinite
set of concentric rings in which the probability of finding
an electron is equally likely, i.e.

∫ ρn+1

ρn

∣∣J|ℓ|(kρ ρ)
∣∣2 ρdρ = constant. (3)

Therefore, the integral of
∣∣∣ψBessel
ℓ,kρ

∣∣∣
2
over a transverse

plane is infinite, thus implying that the electron’s
wavefunction is not square-integrable and thereby can-
not physically represent a probability amplitude. Though
unphysical, it is worth noting that there are approximated
versions of theseBessel beams exhibiting similar yet phys-
ical traits and that can be readily produced in practice
using techniques that will be later discussed [7 ,8 ].

2.2. Paraxial electronwavepackets and
Laguerre-Gauss beams

The unphysical nature of Bessel electron beams stems
from the fact that the Helmholtz equation admits
diffraction-free plane-wave solutions that are not square-
integrable. To find more physical solutions, we must
therefore proceed by going back to the Helmholtz equa-
tion and modifying it in order to account for the ex-
pected physical behaviour of electron wavepackets, i.e.
their diffraction. Assuming that the electron’s momen-
tum is predominantly oriented along the z axis, the time-
independent wavefunction becomes ψ(r) = φ(r)
exp (ip0z/!).We then re-express theHelmholtz equation
in terms of φ(r). In order to seek for realistic solutions,
we will be using dimensionless coordinates that are nor-
malized to parameters describing the beam’s transverse
and longitudinal features. We let ρ = w0 ρ

′ where ρ′ is a

FIG. 1. Transverse profile of Bessel electron waves. (a) Transverse
probability density function of Bessel beams ψBessel

`,kρ
and (b) their cor-

responding transverse phase profiles plotted in hue colours.

discussions, these solutions include an exp(i`ϕ) term in their
formulation thus implying that they carry OAM. Bessel beams
also have a distinct doughnut-shaped transverse profile caused
by the presence of the Bessel function in their formulation.
These transverse profiles can be found in Figure 1.

Though it appears at first glance that we have found a
suitable wavefunction to describe OAM-carrying electrons, a
closer inspection of its probability density function, PBessel =∣∣∣∣ΨBessel

`,kρ
(r; t)

∣∣∣∣2 =
∣∣∣∣ψBessel
`,kρ

(r)
∣∣∣∣2, reveals that it suffers from cer-

tain unphysical aspects. This probability density is explicitly
given by PBessel =

∣∣∣J|`|(kρρ)
∣∣∣2 and has no dependence what-

soever neither on time, ϕ, nor z. This directly implies that
the probability of finding the travelling electron at position r
does not vary with time nor position on the axis along which
its wavefunction propagates. There are even more traits that
add to this solution’s unphysical behaviour. Unlike along the z
direction, PBessel varies with the radial coordinate thus imply-
ing that the probability of finding the electron varies with its
transverse position and holds cylindrical symmetry. The latter
vanishes at certain radii ρn = x`,n/kρ, where x`,n is the nth zero
of J|`|(·), i.e. J|`|(x`,n) = 0. This spatial probability distribution
thereby forms an infinite set of concentric rings in which the
probability of finding an electron is equally likely, i.e.∫ ρn+1

ρn

∣∣∣J|`|(kρρ)
∣∣∣2 ρdρ = constant. (3)

Therefore, the integral of
∣∣∣∣ψBessel
`,kρ

∣∣∣∣2 over a transverse plane is
infinite, thus implying that the electron’s wavefunction is not
square-integrable and thereby cannot physically represent a
probability amplitude. Though unphysical, it is worth noting
that there are approximated versions of these Bessel beams
exhibiting similar yet physical traits and that can be readily
produced in practice using techniques that will be later dis-
cussed [7, 8].

B. Paraxial electron wavepackets and Laguerre-Gauss beams

The unphysical nature of Bessel electron beams stems
from the fact that the Helmholtz equation admits diffraction-
free plane-wave solutions that are not square integrable. To

find more physical solutions, we must therefore proceed
by going back to the Helmholtz equation and modifying
it in order to account for the expected physical behaviour
of electron wavepackets, i.e. their diffraction. Assum-
ing that the electron’s momentum is predominantly oriented
along the z axis, the time-independent wavefunction becomes
ψ(r) = φ(r) exp(ip0z/~) .We then re-express the Helmholtz
equation in terms of φ(r). In order to seek for realistic solu-
tions, we will be using dimensionless coordinates that are nor-
malized to parameters describing the beam’s transverse and
longitudinal features. We let ρ = w0ρ

′, where ρ′ is a di-
mensionless radial coordinate and w0 is the wavefunction’s
‘width’ indicating the relative extent of the beam’s transverse
profile. Interestingly, a wave’s width, together with its en-
ergy or its momentum along the direction of propagation,
defines its diffraction. Namely, the distance over which the
wave does not significantly diffract is given by zR = kw0

2/2.
Recall that the beam energy E0 determines the electron’s de
Broglie wavelength λdB, and consequently its k value, i.e.
k = 2π/λdB = (2meE0/~

2)1/2. This relation naturally implies
that the z-coordinate must be normalized in terms of zR, i.e.
z = zRz′, where z′ is the longitudinal dimensionless coordi-
nate. We note that the azimuthal coordinate does not require
such a normalization as it is not defined by any units, i.e.
ϕ = ϕ′. When these dimensionless coordinates are brought
into consideration, the Helmholtz equation becomes∇′2⊥ + 4i

∂

∂z′
+

1
π2

(
λdB

w0

)2
∂2

∂z′2

 φ(ρ′, ϕ′, z′) = 0, (4)

where ∇′2⊥ is the dimensionless transverse Laplacian. We
then proceed in the same way as paraxial optics, by consid-
ering electron waves with beam widths that are greater than
the de Broglie wavelength, i.e. w0 � λdB. This is known
as the paraxial approximation and effectively removes the last
term of Equation (4) thus yielding the so-called paraxial wave
equation. Like the Helmholtz equation, the paraxial equation
admits various sets of eigenfunctions with formulations that
depend on the coordinate system in which it is solved. The
OAM-carrying solutions expressed in terms of cylindrical co-
ordinates are known as the Laguerre-Gauss (LG) modes and
their formulation is provided below

ψLG
`,p (ρ, ϕ, z) =

(
2p!

π(p + |`|)!

)1/2 1
w(z)

ρ√2
w(z)

|`|
× exp

(
−

ρ2

w2(z)

)
L|`|p

(
2ρ2

w2(z)

)
× exp

(
iΦLG

`,p

)
,

(5)

where w(z) = w0(1 + (z/zR)2)1/2 is the electron beam’s spot
size, L|`|p (·) is the associated Laguerre polynomial, and ΦLG

`,p
consists of the phase of the beam and is given by

ΦLG
`,p =

kρ2

2R(z)
+ `ϕ + kz

− (2p + |`| + 1) arctan
(

z
zR

)
,

(6)
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dimensionless radial coordinate and w0 is the wavefunc-
tion’s ‘width’ indicating the relative extent of the beam’s
transverse profile. Interestingly, a wave’s width, together
with its energy or its momentum along the direction of
propagation, defines its diffraction. Namely, the distance
overwhich thewavedoes not significantly diffract is given
by zR = kw0

2/2. Recall that the beam energy E0 deter-
mines the electron’s de Broglie wavelength λdB, and con-
sequently its k value, i.e. k = 2π/λdB = (2meE0/!2)1/2.
This relation naturally implies that the z-coordinatemust
be normalized in terms of zR, i.e. z = zR z′ where z′

is the longitudinal dimensionless coordinate. We note
that the azimuthal coordinate does not require such a
normalization as it is not defined by any units, i.e. ϕ = ϕ′.
When these dimensionless coordinates are brought into
consideration, the Helmholtz equation becomes

(

∇′2
⊥ + 4i

∂

∂z′ + 1
π2

(
λdB
w0

)2 ∂2

∂z′2

)

φ(ρ′,ϕ′, z′) = 0,

(4)

where ∇′2
⊥ is the dimensionless transverse Laplacian.

We then proceed in the same way as paraxial optics,
by considering electron waves with beam widths that
are greater than the de Broglie wavelength, i.e. w0 ≫
λdB. This is known as the paraxial approximation and
effectively removes the last term of Equation (4) thus
yielding the so-called paraxial wave equation. Like the
Helmholtz equation, theparaxial equation admits various
sets of eigenfunctions with formulations that depend on
the coordinate system in which it is solved. The OAM-
carrying solutions expressed in terms of cylindrical co-
ordinates are known as the Laguerre-Gauss (LG) modes
and their formulation is provided below

ψLG
ℓ,p (ρ,ϕ, z) =

(
2 p!

π (p + |ℓ| )!

)1/2 1
w(z)

(
ρ
√
2

w(z)

)|ℓ|

× exp
(

− ρ2

w2(z)

)
L|ℓ|
p

(
2ρ2

w2(z)

)

× exp
(
i)LG

ℓ,p

)
, (5)

where w(z) = w0(1 + (z/zR)2)1/2 is the electron beam’s
spot size, L|ℓ|

p (.) is the associated Laguerre polynomial,
and )LG

ℓ,p consists of the phase of the beam and is given
by

)LG
ℓ,p = k ρ2

2R(z)
+ ℓϕ + kz

−
(
2p + |ℓ| + 1

)
arctan

(
z
zR

)
, (6)

Figure 2. Transverse profile of Laguerre-Gauss electron waves.
Transverse probability densities of various Laguerre-Gauss beams
ψLG
ℓ,p. Notice the increase of the beam’s extent with increasing
ℓ and the addition of supplementary intensity rings with
increasing p.

where R(z) = z(1 + (zR/z)2) describes the beam’s wave-
front curvature upon propagation. The last term in Equa-
tion (6), i.e. arctan (z/zR), is referred to as the Gouy
phase, and anomalously changes its sign upon traversing
through z = 0. For ℓ ̸= 0, LG modes are also charac-
terized by doughnut shaped transverse probability dis-
tributions. Moreover, the counterpart to the continuous
variable kρ that radially modulates the wavefunction’s
profile in Bessel beams is the discrete variable p ≥ 0.
Thus, unlike Bessel solutions which are only azimuthally
quantizedby the index ℓ, the LGsolutions are also radially
quantized. This distinct attribute is readily seen in these
beams’ transverse structureswhich are shown in Figure 2.

LGwavefunctions are also defined by the very physical
attributes that the Bessel wavefunctions lack. In
particular, we can see that these wavefunctions expe-
rience diffraction broadening given that the extent of
their transverse distributions is defined by w(z) while
the curvature of their wavefronts is set by R(z), both of
which vary upon propagation. Moreover, the integral of
the probability densityPLG = |ψLG

ℓ,p |2 over the transverse
plane is normalized to unity. An additional modulation
to the longitudinal component ofψLG

ℓ,p can also provide a
means to make the integral of |ψLG

ℓ,p |2 finite over z. This
modulation typically consists of a Gaussian distribution
ensuring that the resulting wavefunction is still a solution
of the paraxial wave equation with the properties of LG
wavefunctions [9]. This modulation enforces a quanti-
zation of the longitudinal structure of electron waves
defined bymoving Hermite-Gauss modes, i.e.

φℓ,p,n(r,ϕ, z; t) = ψLG
ℓ,p (r,ϕ; t) uHG

n (z − (p0/me)t) (7)

where uHG
n (.) are the Hermite-Gauss modes with n being

a positive integer value. The 3+1 dimensional wavepacket
solutions form a complete orthonormal set of modes.

FIG. 2. Transverse profile of Laguerre-Gauss electron waves. Trans-
verse probability density function of various Laguerre-Gauss beams
ψLG
`,p . Notice the increase of the beam’s extent with increasing ` and

the addition of supplementary intensity rings with increasing p.

where R(z) = z(1 + (zR/z)2) describes the beam’s wavefront
curvature upon propagation. The last term in Equation (6),
i.e. arctan(z/zR), is referred to as the Gouy phase, and anoma-
lously changes its sign upon traversing through z = 0. For
` , 0, LG modes are also characterized by doughnut shaped
transverse probability distributions. Moreover, the counter-
part to the continuous variable kρ that radially modulates the
wavefunction’s profile in Bessel beams is the discrete vari-
able p ≥ 0. Thus, unlike Bessel solutions which are only
azimuthally quantized by the index `, the LG solutions are
also radially quantized. This distinct attribute is readily seen
in these beams’ transverse structures which are shown in Fig-
ure 2.

LG wavefunctions are also defined by the very physical at-
tributes that the Bessel wavefunctions lack. In particular, we
can see that these wavefunctions experience diffraction broad-
ening given that the extent of their transverse distributions
is defined by w(z) while the curvature of their wavefronts is
set by R(z), both of which vary upon propagation. Moreover,
the integral of the probability density PLG = |ψLG

`,p |
2 over the

transverse plane is normalized to unity. An additional modu-
lation to the longitudinal component of ψLG

`,p can also provide
a means to make the integral of |ψLG

`,p |
2 finite over z. This mod-

ulation typically consists of a Gaussian distribution ensuring
that the resulting wavefunction is still a solution of the parax-
ial wave equation with the properties of LG wavefunctions [9].
This modulation enforces a quantization of the longitudinal
structure of electron waves defined by moving Hermite-Gauss
modes, i.e.

φ`,p,n(r, ϕ, z; t) = ψLG
`,p (r, ϕ; t)uHG

n (z − (p0/me)t) (7)

where uHG
n (·) are the Hermite-Gauss modes with n being a

positive integer value. The 3+1 dimensional wavepacket so-
lutions form a complete orthonormal set of modes. That is,〈
φ`,p,n

∣∣∣φ`′,p′,n′〉 =
∫
φ∗`,p,nφ`′,p′,n′ d3r = δ`,`′δp,p,′δn,n′ , where

δi,i′ is the Kronecker delta function. Thus, any solution of the
paraxial wave equation χ(r, ϕ, z; t) can be expressed as a super-
position χ(r, ϕ, z; t) =

∑
`,p,n c`,p,nφ`,p,n(r, ϕ, z; t), where c`,p,n

are expansion coefficients. As expected, the Laguerre-Gauss
modes have an exp(i`ϕ) term in their formulation. There-
fore, just like Bessel electron beams, this term makes the φ`,p,n
wavepackets eigenfunctions of the L̂z operator with eigenval-
ues of ~`. As discussed earlier, the OAM carried by such an
electron will be given by ~` ez, thus causing the electron to
carry a magnetic dipole moment of µ = gµB` ez. Here, g = 1
is the g-factor for the electron orbital motion, µB = e~/2me
is the Bohr magneton, and ez is the unit vector in the z direc-
tion. This magnetic moment is illustrated in Figure 3 for the
cases of electron wavefunctions of OAM ` = ±2 along with
the classical trajectories attributed to the latter.130 H. LAROCQUE ET AL.

Figure 3. Magnetic dipole moment and classical trajectories of
an electron beam. The trajectories are illustrated over half a
diffraction length zR/2 for the cases of (a) ℓ = 2 and (b) ℓ = −2.

That is,
〈
φℓ,p,n

∣∣φℓ′,p′,n′
〉
=
∫
φ∗
ℓ,p,nφℓ′,p′,n′ d3r = δℓ,ℓ′δp,p′

δn,n′ , where δi,i′ is theKronecker delta function. Thus, any
solution of the paraxial wave equation χ(r,ϕ, z; t) can be
expressed as a superposition χ(r,ϕ, z; t) = ∑

ℓ,p,n cℓ,p,n

φℓ,p,n(r,ϕ, z; t), where cℓ,p,n are expansion coefficients.
As expected, theLaguerre-Gaussmodeshave an exp (iℓϕ)

term in their formulation. Therefore, just like Bessel
electron beams, this term makes the φℓ,p,n wavepackets
eigenfunctions of the L̂z operator with eigenvalues !ℓ. As
discussed earlier, the OAM carried by such an electron
will be given by !ℓ ez , thus causing the electron to carry a
magnetic dipole moment of µ = gµBℓ ez . Here, g = 1 is
the g-factor for the electronorbitalmotion,µB = e!/2me
is the Bohr magneton, and ez is the unit vector in the z
direction. Thismagneticmoment is illustrated in Figure 3
for the cases of electron wavefunctions of OAM ℓ = ± 2
alongwith the classical trajectories attributed to the latter.

Though this value was deduced from the electron’s
OAM and its classical gyromagnetic ratio, it can also
be extracted from the formulation of the electron’s
wavefunction.More specifically, themotion attributed to
&(r; t) causes it to acquire a probability density current
given by j = m−1[Pp0 ez + ! Im(φ∗∇φ)] ≃ m−1P
(p0 ez + !ℓeϕ/ρ), whereP = |φ|2 is the electron’s trans-
verse probability density distribution [9]. Because the
distribution of the electron’s charge and its mass are
both proportional to the probability density function of
the wavefunction, it follows that this probability current
density can be translated into an electrical current den-
sity of ej, where e is the electron’s charge. Therefore,
we can see that the electron’s magnetic dipole moment
comes from the electron’s azimuthal current density Jϕ ≃
e(!ℓ/me ρ)P .

3. Generation

Early realizations of free OAM-carrying electrons at sub
eV energies exploited the fact that bound electrons in
atoms can be attributed to OAM (L̂z) eigenstates in con-
junctionwith ionization processes that remove such elec-
trons from atoms. Namely, upon ionization, the emitted

electron will carry OAM defined by its former atomic
eigenstate [10]. Moreover, if for instance an atom that is
in a superposition of two electronic angular momentum
states is ionized, the emitted electron will likewise be in a
superposition of two angular momentum states leading
to quantum beats, which have been observed in both,
field ionization [11] and photoionization [12].

Our previous discussions concerning the formulation
of electronwavefunctionshave revealed that thenetOAM
carried by an electron explicitly relies on the presence
of an exp (iℓϕ) term. In practice, imprinting such an
azimuthally varying transverse phase onto an incident
Gaussian electron beam results in the generation of an
OAM-carrying electron beam. Shaping electron beams
into OAM-carrying beams can be achieved through a
variety of methods, four of which are outlined below.
Unlike earlier methods relying on ionization, the ones
presented in this section are designed to generate coher-
ent electronwaves. Furthermore, they are alsomore easily
implemented in electron microscopes, in which proce-
dures to characterize materials using twisted electrons
are usually implemented.

3.1. Spiral phase plates

The azimuthal phase dependence ofOAMcarryingwave-
functions causes their wavefronts, i.e. regions of constant
phase, to be helically shaped. In essence, spiral phase
plates (SPPs) are devices that directly impose such a
twistedwavefront. They aremadeof amaterial possessing
a mean inner potential Vinner(r) that can be effectively
seen as a potential barrier by the electrons. As a re-
sult, when the electrons travel through such a mate-
rial, they will lose kinetic energy and thus momentum.
Therefore, their de Broglie wavelength increases within
the material, as prescribed by the relation λdB = h/p.
With this increase, one is therefore capable of arbitrarily
shaping an electron beam’s wavefront using a slab of
this material with a correspondingly varying thickness.
Namely, the introduced phase shift due to a material
with a thickness t(r) is χ(r) = CEVinner(r) t(r), where
CE is a constant. SPPs consist of such slabs that are
specifically designed to have a spiraling thickness profile,
i.e. t(r) := t(ϕ) = a+b ϕ, where a and b are two arbitrary
real parameters. When

∮
dχ(r) is set to ℓλdB, i.e. integer

multiples ofwavelength, then the SPP imprints a spiraling
wavefront consisting of ℓ intertwined helices onto the
traversing electron beam’s wavefunction, and thus causes
it to acquire ℓ units of OAM as illustrated in Figure 4(a).
It is worthmentioning that the generated beam is neither
Bessel nor LG, because it is generated via a direct imprint-
ing of a phase singularity exp (iℓϕ) onto aGaussian prob-
ability distribution, i.e. exp (iℓϕ) exp ( − ρ2/w2

0). Such

FIG. 3. Magnetic dipole moment and classical trajectories of an
electron beam. The trajectories are illustrated over half a diffraction
length zR/2 for the cases of (a) ` = 2 and (b) ` = −2.

Though this value was deduced from the electron’s OAM
and its classical gyromagnetic ratio, it can also be ex-
tracted from the formulation of the electron’s wavefunc-
tion. More specifically, the motion attributed to Ψ(r; t)
causes it to acquire a probability density current given by
j = m−1 [

Pp0ez + ~ Im(φ∗∇φ)
]
' m−1P(p0ez + ~`eϕ/ρ),

where P = |φ|2 is the electron’s transverse probability den-
sity distribution [9]. Because the distribution of the electron’s
charge and its mass are both proportional to the probabil-
ity density function of the wavefunction, it follows that this
probability current density can be translated into an electri-
cal current density of ej, where e is the electron’s charge.
Therefore, we can see that the electron’s magnetic dipole
moment comes from the electron’s azimuthal current density
Jϕ ' e(~`/meρ)P

III. GENERATION

Early realizations of free OAM-carrying electrons at sub
eV energies exploited the fact that bound electrons in atoms
can be attributed to OAM (L̂z) eigenstates in conjunction with
ionization processes that remove such electrons from atoms.
Namely, upon ionization, the emitted electron will carry OAM
defined by its former atomic eigenstate [10]. Moreover, if
for instance an atom that is in a superposition of two elec-
tronic angular momentum states is ionized, the emitted elec-
tron will likewise be in a superposition of two angular mo-
mentum states leading to quantum beats, which have been ob-
served in both, field ionization [11] and photoionization [12].
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Figure 4. Shaping an electron wave to imbue it with orbital
angular momentum (OAM). (a) The process of imparting one
unit of OAM onto an electron through the use of a spiral phase
plate. The thickness of the phase plate is emphasized by a
hue colour scheme where areas coloured in red represent a
thickness corresponding to an integer multiple of the electron’s
wavelength. (b) TEM bright field image of a spiral phase plate
designed to generate electrons carrying ℓ=1 units of OAM. (c)
Probability density of the electron beamgeneratedwith the spiral
phase plate shown in (b).

modes are referred to as a sub-class of Hypergeometric-
Gauss modes, and unlike LG and Bessel beams, they are
not shape-invariant upon free-space propagation. The
first electron SPP was reported in 2010 by Uchida and
Tonomurawhoused spontaneously stacked graphite thin
films for a 300 keV electron beam and have reported
the first generation of electron vortex beams [13]. Since
then, significant improvements have beenmade in nano-
fabricating such devices [14]. A TEM image of an SPP
fabricated using ion beam lithography along with the
electron beam generated from the device is shown in
Figure 4(b) and (c), respectively.

3.2. Holography

As opposed to SPPs, which directly shape the wavefronts
of electron beams, the generation of OAM-carrying elec-
trons through the use of holography relies on the distinct
interference pattern of an OAM carrying wavefunction,
ψℓ(r) ∝ exp (iℓϕ), with reference electron wavesψref(r).
More specifically, holography consists of generating an
imageψimage(r) from the pattern resulting from its inter-
ference with a slightly misaligned plane wave ψref(r) ∝
exp (ikyy), i.e. I(r) = |ψimage(r) + ψref(r)|2. Here, ky is
a transverse component of the wave vector and we will
omit the propagating phase term exp (ikzz) in the formu-
lation of the reference and image wavefunctions. Thus,

Figure 5. Shaping twisted electrons with amplitude and phase
holograms. (a) Depiction of the holographic generation of OAM-
carrying electrons, (b) SEM image of an electron amplitude mask
reported by Verbeeck et al. [15 ], (c) SEM image of an electron
phase mask reported by Grillo et al. [16 ]. (d) Experimental
diffraction intensity pattern of a pitchfork hologram in which the
OAM carried by each diffraction order is noted.

having such a pattern, I(r), for the case where the image
corresponds to the OAM-carrying beam, i.e.ψimage(r) =
ψℓ(r), would provide onewith themeans of generating it.
Assuming that the reference and OAM-carrying beams
are equally weighted, this interference pattern is given
specifically by I(r) ∝ (1 + cos (ℓϕ − kyy)) and has the
appearance of a pitchfork. Using holography, one can
make a hologram with this pattern in order to generate
the corresponding OAM-carrying beam by reversing the
interference process described above.Namely this reverse
process consists of illuminating the pitchfork hologram
with an electron plane wave and thereby producing an
OAM-carrying beam that is misaligned with respect to
the plane wave. Such holograms can be used in two
different forms; (i) as amplitude masks [15], and (ii) as
phase masks [16–18]. The amplitude mask is a partially
absorbing device that directly modulates an incoming
electron’s wavefunction ψ0 to ψ0(1 + cos (ℓϕ − kyy)),
or equivalently,ψ0

(
2+ exp (i(ℓϕ − kyy)) + exp ( − i(ℓϕ

−kyy))
)
. The latter formulation of the transmitted wave-

function directly implies that it consists of three distinctly
propagating waves: one that is not deflected, another
deflected in the −ky direction, and another deflected
in the +ky direction where the latter two carry OAM
values of +!ℓ and −!ℓ respectively. As opposed to am-
plitude masks, phase masks, sometimes referred to as
kinoforms, rather modify an electron wavefunction by a
phase factor exp (i I(r)). Though these devices are often
still characterized by some forms of absorption, this ab-
sorption is not nearly as important as the imparted phase
modulation. The low absorption causes the efficiencies
of phase holograms to be much higher than those of

FIG. 4. Shaping an electron wave to imbue it with orbital angular
momentum (OAM). (a) The process of imparting one unit of OAM
onto an electron through the use of a spiral phase plate. The thickness
of the phase plate is emphasized by a hue colour scheme where ar-
eas coloured in red represent a thickness corresponding to an integer
multiple of the electron’s wavelength. (b) TEM bright field image
of a spiral phase plate designed to generate electrons carrying ` = 1
units of OAM. (c) Probability density of the electron beam generated
with the spiral phase plate shown in (b).

Our previous discussions concerning the formulation of
electron wavefunctions have revealed that the net OAM car-
ried by an electron explicitly relies on the presence of an
exp(i`ϕ) term. In practice, imprinting such an azimuthally
varying transverse phase onto an incident Gaussian electron
beam results in the generation of an OAM-carrying electron
beam. Shaping electron beams into OAM-carrying beams can
be achieved through a variety of methods, four of which are
outlined below. Unlike earlier methods relying on ionization,
the ones presented in this section are designed to generate co-
herent electron waves. Furthermore, they are also more easily
implemented in electron microscopes, in which procedures to
characterize materials using twisted electrons are usually im-
plemented.

A. Spiral phase plates

The azimuthal phase dependence of OAM carrying wave-
functions causes their wavefronts, i.e. regions of constant
phase, to be helically shaped. In essence, spiral phase plates
(SPPs) are devices that directly impose such a twisted wave-
front. They are made of a material possessing a mean inner
potential Vinner(r) that can be effectively seen as a potential
barrier by the electrons. As a result, when the electrons travel
through such a material, they will lose kinetic energy and thus
momentum. Therefore, their de Broglie wavelength increases

within the material, as prescribed by the relation λdB = h/p.
With this increase, one is therefore capable of arbitrarily shap-
ing an electron beam’s wavefront using a slab of this material
with a correspondingly varying thickness. Namely, the intro-
duced phase shift due to a material with a thickness t(r) is
χ(r) = CEVinner(r)t(r), where CE is a constant. SPPs consist
of such slabs that are specifically designed to have a spiral-
ing thickness profile, i.e. t(r) := t(ϕ) = a + bϕ, where a
and b are two arbitrary real parameters. When

∮
dχ(r) is set

to `λdB, i.e. integer multiples of wavelength, then the SPP
imprints a spiraling wavefront consisting of ` intertwined he-
lices onto the traversing electron beam’s wavefunction, and
thus causes it to acquire ` units of OAM as illustrated in Fig-
ure 4(a). It is worth mentioning that the generated beam is
neither Bessel nor LG, because it is generated via a direct im-
printing of a phase singularity exp(i`ϕ) onto a Gaussian prob-
ability distribution, i.e. exp(i`ϕ) exp(−ρ2/w0

2). Such modes
are referred to as a sub-class of Hypergeometric-Gauss modes,
and unlike LG and Bessel beams, they are not shape-invariant
upon free-space propagation. The first electron SPP was re-
ported in 2010 by Uchida and Tonomura who used sponta-
neously stacked graphite thin films for a 300 keV electron
beam and have reported the first generation of electron vor-
tex beams [13]. Since then, significant improvements have
been made in nanofabricating such devices [14]. A TEM im-
age of an SPP fabricated using ion beam lithography along
with the electron beam generated from the device is shown in
Figure 4(b) and (c), respectively.

B. Holography

As opposed to SPPs, which directly shape the wave-
fronts of electron beams, the generation of OAM-carrying
electrons through the use of holography relies on the dis-
tinct interference pattern of an OAM carrying wavefunction,
ψ`(r) ∝ exp(i`ϕ), with reference electron waves ψref(r).
More specifically, holography consists of generating an im-
age ψimage(r) from the pattern resulting from its interference
with a slightly misaligned plane wave ψref(r) ∝ exp(ikyy),
i.e. I(r) = |ψimage(r) + ψref(r)|2. Here, ky is a transverse
component of the wave vector and we will omit the propa-
gating phase term exp(ikzz) in the formulation of the refer-
ence and image wavefunctions. Thus, having such a pattern,
I(r), for the case where the image corresponds to the OAM-
carrying beam, i.e. ψimage(r) = ψ`(r), would provide one with
the means of generating it. Assuming that the reference and
OAM-carrying beams are equally weighted, this interference
pattern is given specifically by I(r) ∝ (1 + cos(`ϕ − kyy)) and
has the appearance of a pitchfork. Using holography, one can
make a hologram with this pattern in order to generate the cor-
responding OAM-carrying beam by reversing the interference
process described above. Namely this reverse process con-
sists of illuminating the pitchfork hologram with an electron
plane wave and thereby producing an OAM-carrying beam
that is misaligned with respect to the plane wave. Such holo-
grams can be used in two different forms; (i) as amplitude
masks [15], and (ii) as phase masks [16–18]. The amplitude
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Figure 4. Shaping an electron wave to imbue it with orbital
angular momentum (OAM). (a) The process of imparting one
unit of OAM onto an electron through the use of a spiral phase
plate. The thickness of the phase plate is emphasized by a
hue colour scheme where areas coloured in red represent a
thickness corresponding to an integer multiple of the electron’s
wavelength. (b) TEM bright field image of a spiral phase plate
designed to generate electrons carrying ℓ=1 units of OAM. (c)
Probability density of the electron beamgeneratedwith the spiral
phase plate shown in (b).

modes are referred to as a sub-class of Hypergeometric-
Gauss modes, and unlike LG and Bessel beams, they are
not shape-invariant upon free-space propagation. The
first electron SPP was reported in 2010 by Uchida and
Tonomurawhoused spontaneously stacked graphite thin
films for a 300 keV electron beam and have reported
the first generation of electron vortex beams [13]. Since
then, significant improvements have beenmade in nano-
fabricating such devices [14]. A TEM image of an SPP
fabricated using ion beam lithography along with the
electron beam generated from the device is shown in
Figure 4(b) and (c), respectively.

3.2. Holography

As opposed to SPPs, which directly shape the wavefronts
of electron beams, the generation of OAM-carrying elec-
trons through the use of holography relies on the distinct
interference pattern of an OAM carrying wavefunction,
ψℓ(r) ∝ exp (iℓϕ), with reference electron wavesψref(r).
More specifically, holography consists of generating an
imageψimage(r) from the pattern resulting from its inter-
ference with a slightly misaligned plane wave ψref(r) ∝
exp (ikyy), i.e. I(r) = |ψimage(r) + ψref(r)|2. Here, ky is
a transverse component of the wave vector and we will
omit the propagating phase term exp (ikzz) in the formu-
lation of the reference and image wavefunctions. Thus,

Figure 5. Shaping twisted electrons with amplitude and phase
holograms. (a) Depiction of the holographic generation of OAM-
carrying electrons, (b) SEM image of an electron amplitude mask
reported by Verbeeck et al. [15 ], (c) SEM image of an electron
phase mask reported by Grillo et al. [16 ]. (d) Experimental
diffraction intensity pattern of a pitchfork hologram in which the
OAM carried by each diffraction order is noted.

having such a pattern, I(r), for the case where the image
corresponds to the OAM-carrying beam, i.e.ψimage(r) =
ψℓ(r), would provide onewith themeans of generating it.
Assuming that the reference and OAM-carrying beams
are equally weighted, this interference pattern is given
specifically by I(r) ∝ (1 + cos (ℓϕ − kyy)) and has the
appearance of a pitchfork. Using holography, one can
make a hologram with this pattern in order to generate
the corresponding OAM-carrying beam by reversing the
interference process described above.Namely this reverse
process consists of illuminating the pitchfork hologram
with an electron plane wave and thereby producing an
OAM-carrying beam that is misaligned with respect to
the plane wave. Such holograms can be used in two
different forms; (i) as amplitude masks [15], and (ii) as
phase masks [16–18]. The amplitude mask is a partially
absorbing device that directly modulates an incoming
electron’s wavefunction ψ0 to ψ0(1 + cos (ℓϕ − kyy)),
or equivalently,ψ0

(
2+ exp (i(ℓϕ − kyy)) + exp ( − i(ℓϕ

−kyy))
)
. The latter formulation of the transmitted wave-

function directly implies that it consists of three distinctly
propagating waves: one that is not deflected, another
deflected in the −ky direction, and another deflected
in the +ky direction where the latter two carry OAM
values of +!ℓ and −!ℓ respectively. As opposed to am-
plitude masks, phase masks, sometimes referred to as
kinoforms, rather modify an electron wavefunction by a
phase factor exp (i I(r)). Though these devices are often
still characterized by some forms of absorption, this ab-
sorption is not nearly as important as the imparted phase
modulation. The low absorption causes the efficiencies
of phase holograms to be much higher than those of

FIG. 5. Shaping twisted electrons with amplitude and phase holo-
grams. (a) Depiction of the holographic generation of OAM carrying
electrons, (b) SEM image of an electron amplitude mask reported
by Verbeeck et al. [15], (c) SEM image of an electron phase mask
reported by Grillo et al. [16]. (d) Experimental diffraction intensity
pattern of a pitchfork hologram in which the OAM carried by each
diffraction order is noted.

mask is a partially absorbing device that directly modulates an
incoming electron’s wavefunction ψ0 to ψ0(1 + cos(`ϕ− kyy)),
or equivalently ψ0(2+exp(i(`ϕ−kyy))+exp(−i(`ϕ−kyy))). The
latter formulation of the transmitted wavefunction directly im-
plies that it consists of three distinctly propagating waves: one
that is not deflected, another deflected in the −ky direction,
and another deflected in the +ky direction where the latter two
carry OAM values of +~` and −~` respectively. As opposed
to amplitude masks, phase masks, sometimes referred to as ki-
noforms, rather modify an electron wavefunction by a phase
factor exp(iI(r)). Though these devices are often still char-
acterized by some forms of absorption, this absorption is not
nearly as important as the imparted phase modulation. The
low absorption causes the efficiencies of phase holograms to
be much higher than those of amplitude masks. Other than the
considered sinusoidal holograms, it is worth noting that these
amplitude and phase masks can also adopt blazed and binary
configurations. An illustration of the holographic generation
of twisted electrons is shown in Figure 5(a). SEM images
of holograms reported by Verbeeck et al. [15] and Grillo et
al. [16] can be found in Figure 5(b) and (c), respectively. We
also provide an experimental diffraction intensity pattern of
such a hologram in Figure 5(d).

C. Magnetic monopole

Unlike the SPPs and holographic techniques that directly
use the wave nature of electrons for OAM impartment, the
present method additionally employs the electron’s charge.
Namely, when traveling along a certain path C while being
affected by a vector potential A, an electron will acquire a
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amplitude masks. Other than the considered sinusoidal
holograms, it is worth noting that these amplitude and
phase masks can also adopt blazed and binary configu-
rations. An illustration of the holographic generation of
twisted electrons is shown in Figure 5(a). SEM images
of holograms reported by Verbeeck et al. [15] and Grillo
et al. [16] canbe found inFigure 5(b) and (c), respectively.
We also provide an experimental diffraction intensity
pattern of such a hologram in Figure 5(d).

3.3. Magnetic monopole

Unlike the SPPs and holographic techniques that directly
use the wave nature of electrons for OAM impartment,
the present method additionally employs the electron’s
charge. Namely, when traveling along a certain path C
while being affected by a vector potential A, an electron
will acquire a phase given by χ = (e/!)

∫
C A · dr. We

may choose to express this phase as a relative phase with
respect to that acquired by an electron while traveling
along a given reference path [19]. Therefore, upon this
supplementary consideration, the phase acquired by the
electron along path C can be expressed as a closed loop
integral which, in addition to C, considers this reference
path, hence χ = (e/!)

∮
C A · dr [20]. Using Stokes’

theorem, this integral can be rearranged as a surface
integral over ∇ × A, which is defined by the applied
corresponding magnetic field B. Such a rearrangement
causes the form of the acquired phase to change to χ =
(e/!)"B, where "B =

∫
S B · ds is the magnetic flux

going through the closed loop C. Therefore, the global
phase gained by the electron is proportional to the mag-
netic flux passing through the surface embedded by C.
Let us now consider the case where B corresponds to
the field attributed to a magnetic monopole, i.e. B =
(µ0qm)/(4πr3) r, where µ0 is the permeability of free-
space, r = |r| is the radial coordinate, and qm is the
strength or the ‘magnetic charge’ of the monopole. As
depicted in Figure 6(a), the flux going through the surface
delimited by the electron’s trajectory and a reference
trajectory positioned at ϕ = 0 clearly depends on the az-
imuthal separation%ϕ = ϕ between both paths. Indeed,
a calculation of this flux reveals that the phase acquired
by the electron beam becomes χ = (eµ0qm)/(h)ϕ.
We can therefore see that a magnetic monopole can add
an azimuthally dependent phase to the electron. When
(eµ0 qm)/(h) is an integer, this phase can directly be
associated with OAM as illustrated in Figure 6(b). Inter-
estingly, on a fundamental level, the postulated existence
of natural magnetic monopoles would enforce such a
condition onto the monopole’s magnetic charge qm, i.e.
the magnetic charge is intrinsically quantized. Unfortu-
nately, the existence of these entities has so far not been

Figure 6. Electron propagation through a magnetic monopole.
(a) Images of the surfaces used to calculate the phase gained by
an electron upon propagating through a monopole’s magnetic
field. These surfaces are associated with electrons positioned
at azimuthal coordinates of (left-to-right) ϕ = π/2, π , 3π/2,
and 2π . (b) Illustration of an electron gaining one unit of
OAM ((eµ0qm )/h = 1) upon propagating through a magnetic
monopole. (c) Field lines of a magnetic dipole. The highlighted
area depicts the region where this field closely resembles that of
a magnetic monopole. (d) Experimental propagation of a focused
OAM-carrying electron beam generated by a magnetic needle
reported by Béché et al. [21].

shown, hence we cannot directly use them to impart
OAM onto electrons. However, the absence of natural
magnetic monopoles does not necessarily prohibit the
use of entities that can imitate theirmagnetic structure for
such purposes. For instance, as shown in Figure 6(c), one
could employ one endof amagnetic dipolewhere the field
is very close to being perfectly radial. In fact, it has been
demonstrated that magnetic needles can be used in this
fashion to generate OAM-carrying electrons. In essence,
magnetic needles consist of very thin magnetic dipole
structures whose strength can be tuned by the application
of an electrical current [21]. With this tuning procedure,
the ‘monopole’ strength qm of both ends of the needle
can be modified to satisfy the condition ℓ = (eµ0 qm)/h,
where ℓ is an integer, thus allowing the impartment of
!ℓ units of OAM onto incoming electrons. Nonetheless,
the blocking caused by the needle will introduce a small
spread in the electron’s OAM spectrum. These effects can
effectively be noticed in the experimental propagation of
a beam generated by suchmeans as originally reported by
Béché et al. [21]. These results are shown in Figure 6(d).

3.4. q-filters

The manner in which the previous methods add
azimuthal phase variations to electrons either rely on
interacting with its wavefronts or with its charge. Here,
we present a way to add OAM onto electrons by using
another of their distinguishing traits, namely their spin, in

FIG. 6. Electron propagation through a magnetic monopole. (a) Im-
ages of the surfaces used to calculate the phase gained by an electron
upon propagating through a monopole’s magnetic field. These sur-
faces are associated with electrons positioned at azimuthal coordi-
nates of (left-to-right) ϕ = π/2, π, 3π/2, and 2π. (b) Illustration of an
electron gaining one unit of OAM ((eµ0qm)/h = 1) upon propagating
through a magnetic monopole. (c) Field lines of a magnetic dipole.
The highlighted area depicts the region where this field closely re-
sembles that of a magnetic monopole. (d) Experimental propagation
of a focused OAM-carrying electron beam generated by a magnetic
needle reported by Béché et al. [19].

phase given by χ = (e/~)
∫

C A · dr. We may choose to express
this phase as a relative phase with respect to that acquired by
an electron while traveling along a given reference path [20].
Therefore, upon this supplementary consideration, the phase
acquired by the electron along path C can be expressed as a
closed loop integral which, in addition to C, considers this ref-
erence path, hence χ = (e/~)

∮
C A ·dr [21]. Using Stokes’ the-

orem, this integral can be rearranged as a surface integral over
∇×A, which is defined by the applied corresponding magnetic
field B. Such a rearrangement causes the form of the acquired
phase to change to χ = (e/~)ΦB, where ΦB =

∫
S B · ds, is

the magnetic flux going through the closed loop C. There-
fore, the global phase gained by the electron is proportional to
the magnetic flux passing through the surface embedded by C.
Let us now consider the case where B corresponds to the field
attributed to a magnetic monopole, i.e. B = (µ0qm)/(4πr3)r,
where µ0 is the permeability of free-space, r = |r| is the radial
coordinate, and qm is the strength or the ‘magnetic charge’
of the monopole. As depicted in Figure 6(a), the flux going
through the surface delimited by the electron’s trajectory and
a reference trajectory positioned at ϕ = 0 clearly depends on
the azimuthal separation ∆ϕ = ϕ between both paths. Indeed,
a calculation of this flux reveals that the phase acquired by the
electron beam becomes χ = (eµ0qm)/(h)ϕ. We can therefore
see that a magnetic monopole can add an azimuthally depen-
dent phase to the electron. When (eµ0qm)/(h) is an integer.,
this phase can directly be associated with OAM as illustrated
in Figure 6(b). Interestingly, on a fundamental level, the pos-
tulated existence of natural magnetic monopoles would en-
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force such a condition onto the monopole’s magnetic charge
qm, i.e. the magnetic charge is intrinsically quantized. Un-
fortunately, the existence of these entities has so far not been
shown, hence we cannot directly use them to impart OAM
onto electrons. However, the absence of natural magnetic
monopoles does not necessarily prohibit the use of entities that
can imitate their magnetic structure for such purposes. For in-
stance, as shown in Figure 6(c), one could employ one end of
a magnetic dipole where the field is very close to being per-
fectly radial. In fact, it has been demonstrated that magnetic
needles can be used in this fashion to generate OAM-carrying
electrons. In essence, magnetic needles consist of very thin
magnetic dipole structures whose strength can be tuned by the
application of an electrical current [19]. With this tuning pro-
cedure, the ‘monopole’ strength qm of both ends of the nee-
dle can be modified to satisfy the condition ` = (eµ0qm)/h,
where ` is an integer, thus allowing the impartment of ~` units
of OAM onto incoming electrons. Nonetheless, the blocking
caused by the needle will introduce a small spread in the elec-
tron’s OAM spectrum. These effects can effectively be noticed
in the experimental propagation of a beam generated by such
means as originally reported by Béché et al. [19]. These re-
sults are shown in Figure 6(d).

D. q-filters

The manner in which the previous methods add azimuthal
phase variations to electrons either rely on interacting with
its wavefronts or with its charge. Here, we present a way to
add OAM onto electrons by using another of their distinguish-
ing traits, namely their spin, in conjunction with an externally
applied magnetic field by means of a device known as a q-
filter. Much like its OAM, an electron’s spin consists of a
property describing a component of its total angular momen-
tum. However, unlike OAM, spin is not related whatsoever
to the electron wavefunction’s spatial profile, but is rather at-
tributed to one of its more intrinsic states. More specifically, it
is attributed to the angular momentum generated by a specific
component of the circulating flow of energy in the electron’s
wavefunction [22]. As in the case of OAM, spin consists of
a quantized quantity, yet, for electrons, it is bounded to val-
ues of s = ±1/2 in units of ~. The fundamental differences
between spin and OAM allows for an electron’s wavefunc-
tion to be simultaneously defined by both of these properties,
though it is worth noting that both forms of angular momenta
couple to each other in relativistic regimes [23]. In particular,
as formerly employed, the OAM component of an electron is
often formulated in terms of an exp(i`ϕ) term in its wavefunc-
tion while its spin component is represented by | ↑〉 or | ↓〉,
which respectively denote spins of ±1/2. Moreover, as in the
case of OAM, an electron’s spin contributes to its magnetic
dipole moment by an amount µ = gsµBs, where gs ≈ 2 thus
allowing spin to effectively interact with magnetic fields. In
particular, when an electron’s spin precesses about an applied
magnetic field, it will gain a phase. The phase acquired due
to this interaction corresponds to a geometric (Berry) phase
which generally describes the phase acquired by physical en-

tities upon being subjected to cyclic adiabatic processes. In
this case, this adiabatic process corresponds to the periodic
precession of the electron’s spin about the applied magnetic
field. This precession can be attributed to a specific trajectory
in the electron’s spin space [21] conveniently depicted by a
Bloch sphere where the north pole is associated with the | ↑〉
state and the south pole associated with the | ↓〉 state. The
phase acquired by the electron will thereby depend on the tra-
jectory that its spin vector follows on the Bloch sphere with re-
spect to a reference trajectory. In essence, this acquired phase
is proportional to the solid angle enclosed by the trajectories
on the Bloch sphere.

The idea behind the q-filter, as depicted in Figure 7(a), is to
enable such a precession in a systematic way that will make
the electron acquire an azimuthally dependent phase, and thus
OAM. To achieve such control, we make electrons defined by
a central momentum p0 go through a finite region of length L
where there is a well-defined (space-varying) magnetic field.
In practice, this region is usually configured as a tube of length
L in which several magnets are inserted to generate a partic-
ular field. In addition to the magnetic field, an electric field
is also applied inside the tube to neutralize the Lorentz force
applied on the electron, i.e. e(E + p/me × B) = 0, in order
to prevent deflections in the electron’s trajectory. For simplic-
ity we first consider the case where the applied magnetic field
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conjunction with an externally applied magnetic field by
means of a device known as a q-filter.Much like its OAM,
an electron’s spin consists of a property describing a
component of its total angularmomentum.However, un-
like OAM, spin is not related whatsoever to the electron
wavefunction’s spatial profile, but is rather attributed
to one of its more intrinsic states. More specifically, it
is attributed to the angular momentum generated by a
specific component of the circulating flow of energy in
the electron’s wavefunction [22]. As in the case of OAM,
spin consists of a quantized quantity, yet, for electrons,
it is bounded to values of s = ± 1/2 in units of !. The
fundamental differences between spin and OAM allows
for an electron’s wavefunction to be simultaneously de-
fined by both of these properties, though it is worth
noting that both forms of angular momenta couple to
each other in relativistic regimes [23]. In particular, as
formerly employed, the OAM component of an electron
is often formulated in terms of an exp (iℓϕ) term in its
wavefunction while its spin component is represented
by |↑⟩ or |↓⟩, which respectively denote spins of ± 1/2.
Moreover, as in the case of OAM, an electron’s spin
contributes to its magnetic dipole moment by an amount
µ = gsµBs, where gs ≈ 2, thus allowing spin to effec-
tively interact with magnetic fields. In particular, when
an electron’s spin precesses about an applied magnetic
field, it will gain a phase. The phase acquired due to
this interaction corresponds to a geometric (Berry) phase
which generally describes the phase acquired by physical
entities upon being subjected to cyclic adiabatic pro-
cesses. In this case, this adiabatic process corresponds
to the periodic precession of the electron’s spin about the
applied magnetic field. This precession can be attributed
to a specific trajectory in the electron’s spin space [20]
conveniently depicted by a Bloch sphere where the north
pole is associated with the |↑⟩ state and the south pole
associated with the |↓⟩ state. The phase acquired by the
electron will thereby depend on the trajectory that its
spin vector follows on the Bloch sphere with respect to
a reference trajectory. In essence, this acquired phase is
proportional to the solid angle enclosedby the trajectories
on the Bloch sphere.

The idea behind the q-filter, as depicted in Figure 7(a),
is to enable such a precession in a systematic way that
will make the electron acquire an azimuthally dependent
phase, and thus OAM. To achieve such control, we make
electrons defined by a central momentum p0 go through
a finite region of length L where there is a well-defined
(space-varying) magnetic field. In practice, this region is
usually configured as a tube of length L in which several
magnets are inserted to generate a particular field. In
addition to the magnetic field, an electric field is also
applied inside the tube to neutralize the Lorentz force

Figure 7. Electron propagation through structured magnetic
fields. (a) The configuration of a q = 1-filter in which structured
magnetic (blue) and electric (red) fields are used over a finite
region to generate OAM-carrying electrons using an external form
of spin-to-orbit coupling. (b) Trajectories taken by the spin-up
electron state on the Bloch sphere upon precessing in a magnetic
field oriented along ϕ = α. These trajectories are coloured
according to the orientation of the corresponding magnetic field.
(c) Examples of structured electric (red) andmagnetic (blue) fields
that can be used in a q-filter configuration. Note how the fields
attributed to negative q values correspond to feasible hexapole
and quadrupole configurations.

applied on the electron, i.e. e(E + p/me × B) = 0, in
order to prevent deflections in the electron’s trajectory.
For simplicity we first consider the case where the applied
magnetic field is uniform and oriented along an angle α
with respect to the x axis. Moreover, we consider the
general case where electrons with no OAM are traveling
along the z axis. These electrons also consist of a superpo-
sition of its possible spin states, |ψ⟩in = a1 |↑⟩ + a2 |↓⟩,
where a1 and a2 are normalized amplitude coefficients,
i.e. |a1|2+|a2|2 = 1. To find the wavefunction at the out-
put of the tube, wemust solve the Schödinger-Pauli equa-
tion which describes the nonrelativistic behaviour of an
electron inside electromagnetic fields [24]. The electron
wavefunction after interacting with balanced magnetic
and electric fields is given by

|ψ⟩out = a1
[
cos (δ/2) |↑⟩ + i sin (δ/2) eiα |↓⟩]

+ a2
[
cos (δ/2) |↓⟩

+ i sin (δ/2) e−iα |↑⟩] , (8)

where δ = 4πL/'1,'1 = 4πRc/gs, and Rc = p0/( |e|B)

is the cyclotron radius. We can quickly deduce from
this expression that the electron experiences a preces-
sion process defined by a spatial period '1/2 and by
an angle δ. As formerly mentioned, this causes a part

FIG. 7. Electron propagation through structured magnetic fields.
(a) The configuration of a q = 1-filter in which structured mag-
netic (blue) and electric (red) fields are used over a finite region to
generate OAM-carrying electrons using an external form of spin-to-
orbit coupling. (b) Trajectories taken by the spin-up electron state on
the Bloch sphere upon precessing in a magnetic field oriented along
ϕ = α. These trajectories are coloured according to the orientation of
the corresponding magnetic field. (c) Examples of structured electric
(red) and magnetic (blue) fields that can be used in a q-filter configu-
ration. Note how the fields attributed to negative q values correspond
to feasible hexapole and quadrupole configurations.
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is uniform and oriented along an angle α with respect to the
x axis. Moreover, we consider the general case where elec-
trons with no OAM are traveling along the z axis. These elec-
trons also consist of a superposition of its possible spin states,
|ψ〉in = a1| ↑〉 + a2| ↓〉, where a1 and a2 are normalized ampli-
tude coefficients, i.e. |a1|

2 + |a2|
2 = 1. To find the wavefunc-

tion at the output of the tube, we must solve the Schödinger-
Pauli equation which describes the nonrelativistic behaviour
of an electron inside electromagnetic fields [24]. The elec-
tron wavefunction after interacting with balanced magnetic
and electric fields is given by

|ψ〉out =a1

[
cos(δ/2)| ↑〉 + i sin(δ/2)eiα| ↓〉

]
+ a2

[
cos(δ/2)| ↓〉 + i sin(δ/2)e−iα| ↑〉

] (8)

where δ = 4πL/Λ1, Λ1 = 4πRc/gs, and Rc = p0/(|e|B) is the
cyclotron radius. We can quickly deduce from this expression
that the electron experiences a precession process defined by
a spatial period Λ1/2 and by an angle δ. As formerly men-
tioned, this causes a part of the electron wavefunction to ac-
quire a phase of ±α attributed to the trajectory of the electron’s
state on the Bloch sphere as shown in Figure 7(b). However,
we can see that the addition of this phase is also accompa-
nied by a flip in the electron’s spin. Such a conversion can
be made complete in the case where δ = π, which can practi-
cally be achieved by carefully tuning the physical parameters
defining our system. The latter include the tube’s length L,
the electrons’ momentum p0, and the magnitude of the ap-
plied magnetic field B. When the magnetic field inside the
tube is structured to have an azimuthally varying orientation
of α(r) = qϕ+ β, where q is an integer and β is a constant, we
can see that electrons will obtain a space-dependent phase of
±qϕ, which directly corresponds to the acquirement of OAM.
Examples of such fields along with the electric fields used
to neutralize the Lorentz force acting on the electron can be
found in Figure 7(c). A tube configured to generate such a
field is referred to as a q-filter.

Though this technique may at first appear to offer little more
than OAM impartment, the fact that it explicitly relies on a
form of coupling between spin and OAM allows it to be used
in the following manner. Consider a spin-unpolarized elec-
tron beam carrying OAM of ` = 1, i.e. |ψ〉in = exp(iϕ)(a1| ↑

〉 + a2| ↓〉)), which could have been generated using any of
the aforementioned methods. By making such a beam pass
through a q = 1-filter that perfectly converts the original
state of the electrons, we will obtain an output wavefunc-
tion |ψ〉out = a1 exp(i2ϕ)| ↓〉 + a2| ↑〉. Let us now recall
that OAM-carrying wavefunctions ψ are defined by dough-
nut shaped probability densities |ψ|2 with a spatial extent that
scales with the OAM carried by the electrons. Based on this
property, we can see that the central region of |ψ〉out is almost
entirely composed of electrons of spin | ↑〉. Therefore, by
making such electrons go through a pinhole with an area that
mostly encompasses the electrons of spin | ↑〉, one could ef-
fectively use the q-filter as an electron spin polarizer with a
conversion efficiency that can realistically reach values near
97.5% [24–26].

IV. MEASUREMENT

Due to their ability to add or remove well-defined units of
OAM from an incident electron beam, many of the devices
introduced in the previous section can alternatively be used
to measure the OAM content of electrons. Practically speak-
ing, instead of using the devices to turn Gaussian beams into
OAM-carrying beams, they are employed to remove a given
amount of OAM from the electrons. By doing so, electrons
that originally carry the corresponding amount of removed
OAM will thereby gain a Gaussian profile while electrons that
do not carry this specific amount will have their OAM altered,
yet their profile will still be doughnut-shaped. One can then
select the electrons with the Gaussian profile, which originally
carried the amount of removed OAM, by focusing the result-
ing beam through a pinhole. Thereafter, by looking at the
relative amount of electrons contained in this Gaussian com-
ponent with respect to the total number of electrons in the
original beam, the weight of electrons carrying the removed
amount of OAM in the original beam can be determined. This
method is referred to as phase-flattening projective measure-
ments, since the wavefronts of individual twisted electrons are
flattened through the impartment of the phase of their OAM
conjugate, and then post-selected by a pinhole [27].

Though this method is quite simple, it suffers from several
disadvantages. The most inconvenient of them is the need
to use a specific device to analyze a distinct OAM compo-
nent. Therefore, to obtain the total OAM spectrum of an
electron beam, one would need an amount of devices corre-
sponding to the amount of analyzed OAM components which
can make the measurement of the electron beam’s OAM long,
tedious, and inefficient. The fact that some of the outer elec-
trons of the converted Gaussian component are blocked by the
pinhole further reduces the efficiency of this method. More-
over, this method is biased against measuring higher values of
OAM [28].

A. OAM sorter

The aforementioned inconveniences in conventional OAM
measurement have led to the development of alternative meth-
ods to analyze an electron beam’s OAM spectrum. One of
the most prominent of these methods consists of a contrap-
tion that effectively behaves as an OAM spectrometer and is
commonly referred to as an OAM sorter. More specifically,
it is able to separate or sort electrons based on their OAM
content [29, 30]. The core of the method relies on unwrap-
ping an electron wavefunction’s azimuthal phase variations
into variations along a given Cartesian coordinate as depicted
in Figure 8(a) for beams of OAM ` = 0 and ` = ±2, The
wavefronts of these unwrapped electrons will be tilted with re-
spect to their direction of propagation and the degree to which
these wavefronts are tilted increases with the original amount
of OAM carried by the electrons. Once the electrons are un-
wrapped, they go through a magnetic lens which will focus the
electrons at various positions determined by the relative tilt of
their wavefronts as shown in Figure 8(b). Because the tilt in
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Figure 8. An electron OAM sorter. (a) Transverse phase profiles of OAM-carrying beams with ℓ = 0 and ℓ = ±2 modulated by their
intensity profiles along with their unwrapped phase profiles. (b) The sorting process of these unwrapped beams where the latter go
through a magnetic lens to be focused at different positions based on their original OAM values. (c) Contour lines depicting variations
in the radial and azimuthal coordinates in a Cartesian system and (d) the equivalent coordinate variations in log-polar coordinates. The
two systems are linked by the coordinate transformation". (e) TEM bright field images of the first and (f) the second of two holograms
that can be used to unwrap an OAM-carrying electron’s azimuthal phase variations into linear phase gradients. (g) Simulated observed
unwrapping process experienced by an electron beam consisting of a superposition of ℓ = ±5 OAM components.

that directly correspond to the weight of a certain OAM
component in the electron beam.

As implied earlier, the main challenge concerning the
implementation of such a device consists of finding a re-
liable way of unwrapping the electron’s azimuthal phase.
In essence, this unwrapping process corresponds to a
conformal mapping " that maps the azimuthal coordi-
nate to a Cartesian coordinate. The mapping can take
the form "(ψ) = a ln (ψ/b), where ψ is a complex
function. In the case where ψ corresponds to an OAM
carrying wavefunction such as ψℓ(r) = f (r) exp (iℓϕ),
where f (r) is a function of the radial coordinate, we can
see that the mapping ψℓ !→ "(ψℓ) will result in the
wavefunction"(ψℓ) = a ln (f (r)/b)+i aℓϕ where radial
variations are mapped along one Cartesian coordinate
while simultaneously mapping azimuthal phase varia-
tions along the other. In practice, this mapping is realized
bymeans of a log-polar coordinate transformationwhich
can be performed by adding a particular phase onto an
electron wavefunction. Namely, as illustrated in Figure
8(c)–(d), the azimuthal coordinate in a Cartesian system
is equivalent to a standard Cartesian coordinate in a log-
polar system, thus allowing for the required unwrapping.
This unwrapping can be achieved using the holograms
shown in Figure 8(e)–(f). Simulated data illustrating the
unwrapping process enabled by the two holograms on
an electron beam carrying ℓ = ±5 OAM components is
shown in Figure 8(g).

Such a device is of considerable interest in the ma-
terials science community due to its ability to readily
provide the entire OAM content of an electron beam.
Namely, material scientists often conduct works related

to analyzing the effects of magnetic fields in materials
on the OAM content of an electron in order to extract
information concerning the material’s nanoscale struc-
ture. Therefore, having such a sorter would considerably
simplify such a task, as demonstrated in [29].

4.2. Nondestructivemeasurement

Though the above sorting process directly provides a
beam’s OAM spectrum, it however relies on drastically
modifying the beam’swavefront.Herewe provide an out-
line of a recent proposal involving themeasurement of an
electron’s OAMwithout resorting to modifying its wave-
front, andhencewithoutmodifying itsOAM.Toperform
such ameasurement,wemustmakeuse of the fact that the
azimuthal probability current density of twisted electrons
is given by jϕ ≃P(!ℓ/mρ)which gives rise to amagnetic
dipole momentµ = ℓµB êz . The presence of this current
results in an azimuthal vector potential which can be
found from jϕ by solving Poisson’s equation. However,
in the case where we are interested in examining the
effects of this potential at radial distances that are much
larger than the radial extent of the electron wavepacket,
this vector potential can be simply expressed as that of a
magnetic dipole. In the case of twisted electrons, it is given
by Adipole(r) = (µ0/4π) ℓµB ρ(ρ2 + z2)−3/2 êϕ which
is azimuthally symmetric and directly proportional to
an electron’s OAM number ℓ. Therefore, if we could
measure this potential, we would be able to obtain some
insight on the electron’s OAM. To do so, we make the
electron travel through an azimuthally symmetric hollow
and conductive object such as a loop or a cylinder. Ac-

FIG. 8. An electron OAM sorter. (a) Transverse phase profiles of OAM-carrying beams with ` = 0 and ` = ±2 modulated by their intensity
profiles along with their unwrapped phase profiles. (b) The sorting process of these unwrapped beams where the latter go through a magnetic
lens to be focused at different positions based on their original OAM values. (c) Contour lines depicting variations in the radial and azimuthal
coordinates in a Cartesian system and (d) the equivalent coordinate variations in log-polar coordinates. The two systems are linked by the
coordinate transformation Φ. (e) TEM bright field images of the first and (f) the second of two holograms that can be used to unwrap an
OAM-carrying electron’s azimuthal phase variations into linear phase gradients. (g) Simulated observed unwrapping process experienced by
an electron beam consisting of a superposition of ` = ±5 OAM components.

the electron wavefunction is determined by its initial OAM
value, the signal resulting from this sequence of transforma-
tions consists of a series of focused points with intensities that
directly correspond to the weight of a certain OAM compo-
nent in the electron beam.

As implied earlier, the main challenge concerning the im-
plementation of such a device consists of finding a reli-
able way of unwrapping the electron’s azimuthal phase. In
essence, this unwrapping process corresponds to a conformal
mapping Φ that maps the azimuthal coordinate to a Cartesian
coordinate. The mapping can take the form Φ(ψ) = a ln(ψ/b),
where ψ is a complex function. In the case where ψ corre-
sponds to an OAM carrying wavefunction such as ψ`(r) =

f (r) exp(i`ϕ), where f (r) is a function of the radial coordi-
nate, we can see that the mapping ψ` 7→ Φ(ψ`) will result in
the wavefunction Φ(ψ`) = a ln( f (r)/b) + ia`ϕ where radial
variations are mapped along one Cartesian coordinate while
simultaneously mapping azimuthal phase variations along the
other. In practice, this mapping is realized by means of a
log-polar coordinate transformation which can be performed
by adding a particular phase onto an electron wavefunction.
Namely, as illustrated in Figure 8(c)-(d), the azimuthal coor-
dinate in a Cartesian system is equivalent to a standard Carte-
sian coordinate in a log-polar system, thus allowing for the
required unwrapping. This unwrapping can be achieved using
the holograms shown in Figure 8(e)-(f). Simulated data illus-
trating the unwrapping process enabled by the two holograms
on an electron beam carrying ` = ±5 OAM components is
shown in Figure 8(g).

Such a device is of considerable interest in the materials sci-
ence community due to its ability to readily provide the entire
OAM content of an electron beam. Namely, material scien-
tists often conduct works related to analyzing the effects of

magnetic fields in materials on the OAM content of an elec-
tron in order to extract information concerning the material’s
nanoscale structure. Therefore, having such a sorter would
considerably simplify such a task, as demonstrated in [29].

B. Nondestructive measurement

Though the above sorting process directly provides a
beam’s OAM spectrum, it however relies on drastically mod-
ifying the beam’s wavefront. Here we provide an outline
of a recent proposal involving the measurement of an elec-
tron’s OAM without resorting to modifying its wavefront, and
hence without modifying its OAM. To perform such a mea-
surement, we must make use of the fact that the azimuthal
probability current density of twisted electrons is given by
jϕ ' P(~`/mρ) which gives rise to a magnetic dipole mo-
ment µ = `µBêz. The presence of this current results in an az-
imuthal vector potential which can be found from jϕ by solv-
ing Poisson’s equation. However, in the case where we are in-
terested in examining the effects of this potential at radial dis-
tances that are much larger than the radial extent of the elec-
tron wavepacket, this vector potential can be simply expressed
as that of a magnetic dipole. In the case of twisted electrons,
it is given by Adipole(r) = (µ0/4π)`µBρ(ρ2 + z2)−3/2 êϕ which
is azimuthally symmetric and directly proportional to an elec-
tron’s OAM number `. Therefore, if we could measure this
potential, we would be able to obtain some insight on the elec-
tron’s OAM. To do so, we make the electron travel through an
azimuthally symmetric hollow and conductive object such as
a loop or a cylinder. According to Faraday’s law of induction,
the motion of the electron’s magnetic moment will result in
the generation of an electric field E = −∂tA which induces a
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Figure 9. Nondestructive measurement of an electron’s OAM.
Theoretically calculated total induced currents in a conductive
loop by passing electrons with OAM values of 1, 5, and 10. The
density plots provided below the graph depict the magnetic
energy density attributed to the magnetic field generated by
the loop’s currents when an electron carrying an OAM value of
100 travels through it. The corresponding position of the electron
relative to the loop is depicted above each plot.

cording to Faraday’s law of induction, the motion of the
electron’s magnetic moment will result in the generation
of an electric field E = −∂tA which induces a current
inside the conductive loop. A quick calculation reveals
that this current is also proportional to the electron’s
OAM number [31]. Therefore, by measuring this small
yet detectable current, we should in principle be able to
measure the electron’s OAM. Moreover, the electron’s
energy can be claimed to be invariant upon propagation
given that the longitudinal magnetic field generated by
the loop’s induced currents are only able to slow it down
to a negligible fraction of its original velocity. Since the
electron’s canonical OAM is invariant upon propagation
through a longitudinal magnetic field, then it will also
not change upon propagating through such a device.
The invariance of the electron’s energy and OAM dur-
ing this measurement process therefore causes the latter
to effectively be considered as a nondestructive process
(Figure 9).

5. Interaction with a longitudinal magnetic field

So far, the dynamics of twisted electrons in magnetic
fields were discussed within the scope of modifying their
OAM content. These discussions specifically entailed the
temporary useof specificfields, such as that of amonopole
or those with a distinct transverse topological structure,
to add discrete units of OAM onto electrons via their
interaction with the electron’s charge or its spin. How-
ever, all of the applications regarding the generation and
detection of twisted electrons were described in terms
of their OAM eigenstates which also conveniently hap-
pened to be those of the potential-free Schrödinger equa-

tion. In this section, we will provide an illustration of
the manner in which the eigenstates satisfying Equa-
tion (1) are modified by the presence of a uniform lon-
gitudinal magnetic field. Our discussion will closely fol-
low the formalism employed in [32]. As in the case of
the q-filter, we must proceed by finding the solutions to
Equation (1) where the presence of a vector potential
effectivelymodifies the kinetic component of the system’s
Hamiltonian from −!2∇2/2me to ( − i!∇ − eA)2/2me,
where the vector potential A must be associated with
a constant magnetic field of the form B = ∇ × A =
B0 êz . Needless to say, there is more than one potential
that can yield such a field, yet, due to gauge invariance,
they should all be related by a gauge transformation,
i.e. A → A + ∇χ , where χ is a scalar. At first glance,
this gauge invariance seems to imply that there could
be completely different wavefunctions ψ describing our
electrons in identical magnetic fields. However, it hap-
pens that thesewavefunctions only differ by aphase eχ/!,
i.e. ψ → ψ exp (i eχ/!). Therefore, the dynamics of
ψ , which are usually based on quantities such as |ψ |2
and ⟨ψ |ψ⟩, will not be affected by these transformations.
Based on such considerations, the first step in finding the
eigenstates of the Schrödinger equation in the presence of
a uniform longitudinal magnetic field consists of finding
a convenient formulation for A. In particular, we will
consider non-zero vector potentials that yield vanishing
and non-vanishing magnetic fields which respectively
result in the so-called free electronAharonov-Bohm states
and Landau states. In both cases, we will let our vector
potential have the form A(r) = f (ρ) eϕ , thus ensuring a
magnetic field defined asB = ∇×A = ρ−1∂ρ(ρf (ρ)) ez .

Given that the vector potential has an azimuthal form,
we can already intuitively see that its presence will bestow
an additional form of azimuthal motion to the electrons
based on the form of the kinetic momentum p − eA. In
fact, the presence of the potential directly modifies the
wavefunction’s azimuthal probability current density to
[32]

jϕ =
(

!
me

Im(ψ∗∇ψ) − e
me

A |ψ |2
)

ϕ

. (9)

Therefore, we can expect that the potential will either
contribute or counter the electrons’ intrinsic orbital mo-
tion.

5.1. Aharonov-Bohm states

Aharonov-Bohm states consist of charged wavefunctions
modified by the potential A(r) = (&)/(2πρ) eϕ , where
& is a given magnetic flux. In its presence, the eigenfunc-

FIG. 9. Nondestructive measurement of an electron’s OAM. The-
oretically calculated total induced currents in a conductive loop by
passing electrons with OAM values of 1, 5, and 10. The density
plots provided below the graph depict the magnetic energy density at-
tributed to the magnetic field generated by the loop’s currents when
an electron carrying an OAM value of 100 travels through it. The
corresponding position of the electron relative to the loop is depicted
above each plot.

current inside the conductive loop. A quick calculation re-
veals that this current is also proportional to the electron’s
OAM number [31]. Therefore, by measuring this small yet
detectable current, we should in principle be able to measure
the electron’s OAM. Moreover, the electron’s energy can be
claimed to be invariant upon propagation given that the lon-
gitudinal magnetic field generated by the loop’s induced cur-
rents are only able to slow it down to a negligible fraction of
its original velocity. Since the electron’s canonical OAM is
invariant upon propagation through a longitudinal magnetic
field, then it will also not change upon propagating through
such a device. The invariance of the electron’s energy and
OAM during this measurement process therefore causes the
latter to effectively be considered as a nondestructive process
(Figure 9).

V. INTERACTION WITH A LONGITUDINAL MAGNETIC
FIELD

So far, the dynamics of twisted electrons in magnetic fields
were discussed within the scope of modifying their OAM con-
tent. These discussions specifically entailed the temporary
use of specific fields, such as that of a monopole or those
with a distinct transverse topological structure, to add dis-
crete units of OAM onto electrons via their interaction with
the electron’s charge or its spin. However, all of the applica-
tions regarding the generation and detection of twisted elec-
trons were described in terms of their OAM eigenstates which
also conveniently happened to be those of the potential-free
Schrödinger equation. In this section, we will provide an
illustration of the manner in which the eigenstates satisfy-
ing Equation (1) are modified by the presence of a uniform

longitudinal magnetic field. Our discussion will closely fol-
low the formalism employed in [32]. As in the case of the
q-filter, we must proceed by finding the solutions to Equa-
tion (1) where the presence of a vector potential effectively
modifies the kinetic component of the system’s Hamiltonian
from −~2∇2/2me to to (−i~∇−eA)2/2me, where the vector po-
tential A must be associated with a constant magnetic field of
the form B = ∇×A = B0êz. Needless to say, there is more than
one potential that can yield such a field, yet, due to gauge in-
variance, they should all be related by a gauge transformation,
i.e. A→ A+∇χ, where χ is a scalar. At first glance, this gauge
invariance seems to imply that there could be completely dif-
ferent wavefunctions ψ describing our electrons in identical
magnetic fields. However, it happens that these wavefunctions
only differ by a phase eχ/~, i.e. ψ → exp(ieχ/~). Therefore,
the dynamics of ψ, which are usually based on quantities such
as |ψ|2 and 〈ψ|ψ〉, will not be affected by these transforma-
tions. Based on such considerations, the first step in finding
the eigenstates of the Schrödinger equation in the presence
of a uniform longitudinal magnetic field consists of finding
a convenient formulation for A. In particular, we will con-
sider non-zero vector potentials that yield vanishing and non-
vanishing magnetic fields which respectively result in the so-
called free electron Aharonov-Bohm states and Landau states.
In both cases, we will let our vector potential have the form
A(r) = f (ρ)eϕ, thus ensuring a magnetic field defined as
B = ∇ × A = ρ−1∂ρ(ρ f (ρ))ez.

Given that the vector potential has an azimuthal form, we
can already intuitively see that its presence will bestow an ad-
ditional form of azimuthal motion to the electrons based on
the form of the kinetic momentum p − eA. In fact, the pres-
ence of the potential directly modifies the wavefunction’s az-
imuthal probability current density to [32]

jϕ =

(
~

me
Im(ψ∗∇ψ) −

e
me

A|ψ|2
)
ϕ

. (9)

Therefore, we can expect that the potential will either con-
tribute or counter the electrons’ intrinsic orbital motion.

A. Aharonov-Bohm states

Aharonov-Bohm states consist of charged wavefunctions
modified by the potential A(r) = (Φ)/(2πρ) eϕ, where Φ is
a given magnetic flux. In its presence, the eigenfunctions of
the Schrödinger equation take the form

ψAB
` ∝ J|`−α|(kρρ) exp(i(`ϕ + kzz)), (10)

where α = (eΦ)/(2π~). A quick calculation of B reveals
that no magnetic field is actually applied on the electron [32],
given that it is essentially concentrated along the ρ = 0 axis.
Therefore, its energy will be identical to that of a free particle.
However, this cannot be said about the dynamics of the elec-
tron’s wavefunction. Indeed, we can see that its original prob-
ability density function is modified to PAB

|`−α| ∝
∣∣∣J|`−α|(kρρ)

∣∣∣2,
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thus resulting in the following probability density current

jAB
|`−α| =

~

me

(
` − α

ρ
eϕ + kz ez

)
PAB
|`−α|, (11)

from which we can clearly observe the influence of A on the
dynamics of the electron wavepacket. Interestingly, the wave-
function’s canonical OAM r × p remains ~`. However, the
expectation values of the electron’s kinetic OAM r× (p− eA),
which dictates the orbital motion of the wavepacket, are
changed to ~(` − α). Though changes are brought to the elec-
tron’s transverse dynamics, there is remarkably no variations
brought to the longitudinal dynamics associated with its prop-
agation. Most notably, the evolution of the electron’s phase
and its probability density function are the same as those of a
free electron characterized by a quantum number ` → ` − α.

B. Landau states

Let us now examine the case where the electron is sub-
jected to a potential associated with a non-zero magnetic field
B = B ez. To obtain such a field, we may let A = (Bρ)/2eϕ.
The electronic eigenstates in such a field are known as Landau
states [32, 33] and are given by

ψL
`,p ∝

(
ρ

wm

)|`|
L|`|p

(
2ρ2

w2
m

)
exp

(
−
ρ2

w2
m

)
exp (i(`ϕ + kzz)) , (12)

where wm = 2
√
~/(|eB|) is amagnetic length parameter which

holds an analogous role to the width w0 from the parax-
ial Laguerre-Gauss beams that were introduced earlier [32].
Let it be noted that wm can also be expressed in terms
of the Larmor precession frequency Ω = (eB)/(2me) as
wm =

√
(2~)/(m |Ω|).

Landau states are endowed with several key features. As
previously suggested, we note that their formulation is almost
identical to those of the free paraxial LG beams where the
width parameter w(z) is replaced by the magnetic length wm.
However, unlike the free LG beams, which are solutions to the
paraxial wave equation and thereby approximate solutions of
the Schrödinger equation, the Landau states ψL

`,p are exact so-
lutions of the Schrödinger equation describing a charged par-
ticle exposed to a magnetic field. Moreover, unlike the width
of the paraxial electrons, the magnetic length wm is invariant
upon propagation, thus causing the electron wavepacket to be
diffractionless. As opposed to the Aharonov-Bohm states, the
eigenenergies of the Landau states are modified by the pres-
ence of a non-zero magnetic field. These eigenenergies are
given by

EL
`,p =

~2k2
z

2me
− ~Ω` + ~ |Ω| (2p + |`| + 1). (13)

We can see that these energies can be attributed to distinct
phenomena related to the dynamics of Landau wavepackets.
First and foremost, they consist of a component (~2k2

z )/(2me)
attributed to the longitudinal propagation of the electron. Sec-
ond, they are also defined by a −~Ω` contribution which cor-
responds to the Zeeman energy, EZ = µB`B, attributed to an

electron with a canonical OAM of ~` in a magnetic field. Fi-
nally, these electron energies also consist of a component that
is directly attributed to the discrete nature of their wavefunc-
tions. This contribution is given by EG = ~ |Ω| (2p + |`| + 1).

The influence of the magnetic field on the dynamics of elec-
tron wavefunctions can also be readily observed in its proba-
bility current density

jL
`,p =

~

me

[
1
ρ

(
` + σ

2ρ2

w2
m

)
eϕ + kzez

]
PL
`,p, (14)

where σ denotes the sign of the magnetic field, i.e.

σ =

+1, B = |B| ez

−1, B = − |B| ez
. (15)

As in the case of Aharonov-Bohm states, the presence of
the azimuthal vector potential effectively acts with or against
the electron’s canonical OAM which still has eigenvalues of
~`. More interestingly, we note that when the electron’s OAM
is countercirculating with respect to the vector potential, i.e.
σ` < 0, then there is a critical radius ρ|`| = wm

√
|`|/2 where

the wavepacket’s azimuthal current density vanishes. Below
this radius, the direction of the current attributed to the wave-
function’s ` value is dominant and thus determines the current
density’s direction. Above ρ|`|, it becomes the direction of the
potential that becomes dominant. These effects cause the ex-
pectation value of the electron’s kinetic OAM to have values
of ~(` + σ(2p + |`| + 1)). Because p > 0, we can see that the
direction of the vector potential always defines the orientation
of the electron’s kinetic OAM.

VI. INTERACTION WITH MATERIALS

One of the main interests surrounding the practical appli-
cations of twisted electrons concerns their ability to interact
with magnetic fields and thereby to be employed as nanoscale
probes in magnetic materials. In practice, the use of elec-
trons for the characterization of materials is typically imple-
mented within a transmission electron microscope (TEM).
Though traditionally employed in the context of electron
imaging or diffraction experiments, TEMs have now found
applications as instruments for nanoscale measurements of
many material traits including magnetic or electric proper-
ties [34, 35], crystalline strain [36], and phononic and plas-
monic responses [37, 38]. Information pertaining to these
properties can be extracted by examining how electrons are
inelastically and elastically scattered by the material. These
scattering processes distinguish themselves by whether a frac-
tion of the electrons’ energy is transferred to the material’s in-
ternal degrees of freedom (inelastic) or whether it is constant
upon propagation through the material (elastic).

The fact that experiments concerning the generation of
twisted electrons can be realized within a TEM significantly
facilitates their integration in the analysis of a material’s at-
tributes. The usefulness of such electrons in this context
arises when their interaction with a material modifies its orig-
inal OAM content thereby allowing the extraction of informa-
tion concerning the potential to which it was subjected. For
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Figure 10. Probing materials with twisted electrons. (a)
Illustration of an EMCD (Electron Magnetic Circular Dichroism)
apparatus. A sample is exposed to an electron beamwhich results
in the scattering of the incident electrons. A phase-flattening
scheme consisting of a hologram and an aperture is then used to
post-select electrons with a certain OAM value imparted by the
material. A magnetic prism and a CCD camera are then used
to acquire the electron energy spectrum of a particular OAM
component. (b) Sketch of typical data for the electron energy
loss spectra (EELS) and the corresponding EMCD spectrum in
an EMCD experiment. The EELS depict the energy spectra of
scattered electrons with opposite OAM values and thereby of
opposite handedness (left and right). The EMCD spectrum, which
corresponds to the difference between the two EELS spectra,
exhibits the asymmetry between the scattered OAM components
and thereby the material’s magnetic properties.

that the direction of the vector potential always defines
the orientation of the electron’s kinetic OAM.

6. Interaction withmaterials

One of the main interests surrounding the practical ap-
plications of twisted electrons concerns their ability to
interact with magnetic fields and thereby to be employed
as nanoscale probes in magnetic materials. In practice,
the use of electrons for the characterization ofmaterials is
typically implementedwithin a transmission electronmi-
croscope (TEM). Though traditionally employed in the
context of electron imaging or diffraction experiments,
TEMs have now found applications as instruments for
nanoscale measurements of many material traits includ-
ing magnetic or electric properties [34,35], crystalline
strain [36], and phononic and plasmonic responses [37,
38]. Information pertaining to these properties can be
extracted by examining how electrons are inelastically
and elastically scattered by the material. These scattering
processes distinguish themselves by whether a fraction
of the electrons’ energy is transferred to the material’s
internal degrees of freedom (inelastic) or whether it is
constant uponpropagation through thematerial (elastic).

The fact that experiments concerning the generation
of twisted electrons can be realized within a TEM sig-
nificantly facilitates their integration in the analysis of a
material’s attributes. The usefulness of such electrons in

this context arises when their interaction with a material
modifies its original OAM content thereby allowing the
extraction of information concerning the potential to
which it was subjected. For instance, it is well-known
that the magnetic traits of ferromagnetic materials in-
troduce a form of dichroism in an electron’s inelastic
scattering cross section. Namely, the degree to which
twisted electrons are inelastically scattered will vary with
the handedness of their helical wavefronts. This is at-
tributed to the fact that this scattering process entails the
excitation of deep atomic stateswith opposite symmetries
and different populations. To deduce amaterial’s magne-
tization from these asymmetric scattered intensities, one
usually relies on its so-called electron magnetic circular
dichroism (EMCD) spectra [39–42]. However, EMCD
spectra have always been experimentally challenging to
measure given that they originally required very sensitive
inelasticwave interferometry.With the advent of electron
OAM measurement techniques, the measurement of a
material’s dichroism has been significantly simplified to
a mere analysis of an electron’s OAM spectrum [15] as
depicted in Figure 10. The usefulness of this technique is
further extended by the fact that dichroic processes are
not confined to amaterial’s magnetic traits. In particular,
based on their 3D structures,materials, or evenmolecules
and systemsof nanoparticles, can exhibit formsof dichro-
ism in the OAM content of inelastically scattered elec-
trons when exposed to twisted electrons. In addition to
providing information on their 3D structures, the dichro-
ism of suchmolecular arrangements also allows for a way
of spatially resolvingplasmonexcitations inmaterials and
predicting their cross section [43,44].

The characterization of a material with twisted elec-
trons also encompasses the probing of processes that in-
volve elastic scattering.The lattermostly involve a formof
coupling between the quantum states describing twisted
electrons and the material’s so-called channeling states
[45]. In principle, this coupling causes the electron to
undergo a propagation that is almost undisturbed by the
material. This type of propagation could prospectively
allow for a characterization of the material’s internal
structure by examining the degree to which the state of
the electron is unperturbed. However, the experimen-
tal realization of such a method has so far been pre-
vented by the difficulties of achieving a satisfactory level
of the required coupling. Even the slightest discrepan-
cies can cause OAM-carrying electron beams to become
unstable upon propagating through the material [46].
Fortunately, not all characterization methods based on
the elastic scattering of OAM-carrying electrons rely on
their coupling with a material’s channeling states. For
instance, some rely on measuring the phase acquired
by OAM-carrying electrons upon propagating through a

FIG. 10. Probing materials with twisted electrons. (a) Illustration
of an EMCD (Electron Magnetic Circular Dichroism) apparatus. A
sample is exposed to an electron beam which results in the scattering
of the incident electrons. A phase-flattening scheme consisting of a
hologram and an aperture is then used to post-select electrons with a
certain OAM value imparted by the material. A magnetic prism and
a CCD camera are then used to acquire the electron energy spectrum
of a particular OAM component. (b) Sketch of typical data for the
electron energy loss spectra (EELS) and the corresponding EMCD
spectrum in an EMCD experiment. The EELS depict the energy
spectra of scattered electrons with opposite OAM values and thereby
of opposite handedness (left and right). The EMCD spectrum, which
corresponds to the difference between the two EELS spectra, exhibits
the asymmetry between the scattered OAM components and thereby
the material’s magnetic properties.

instance, it is well-known that the magnetic traits of ferro-
magnetic materials introduce a form of dichroism in an elec-
tron’s inelastic scattering cross section. Namely, the degree
to which twisted electrons are inelastically scattered will vary
with the handedness of their helical wavefronts. This is at-
tributed to the fact that this scattering process entails the exci-
tation of deep atomic states with opposite symmetries and dif-
ferent populations. To deduce a material’s magnetization from
these asymmetric scattered intensities, one usually relies on its
so-called electron magnetic circular dichroism (EMCD) spec-
tra [39–42]. However, EMCD spectra have always been ex-
perimentally challenging to measure given that they originally
required very sensitive inelastic wave interferometry.With the
advent of electron OAM measurement techniques, the mea-
surement of a material’s dichroism has been significantly sim-
plified to a mere analysis of an electron’s OAM spectrum [15]
as depicted in Figure 10. The usefulness of this technique is
further extended by the fact that dichroic processes are not
confined to a material’s magnetic traits. In particular, based
on their 3D structures, materials, or even molecules and sys-
tems of nanoparticles, can exhibit forms of dichroism in the
OAM content of inelastically scattered electrons when ex-
posed to twisted electrons. In addition to providing infor-
mation on their 3D structures, the dichroism of such molec-
ular arrangements also allows for a way of spatially resolv-
ing plasmon excitations in materials and predicting their cross
section [43, 44].

The characterization of a material with twisted electrons
also encompasses the probing of processes that involve elastic
scattering. The latter mostly involve a form of coupling be-
tween the quantum states describing twisted electrons and the

material’s so-called channeling states [45]. In principle, this
coupling causes the electron to undergo a propagation that is
almost undisturbed by the material. This type of propagation
could prospectively allow for a characterization of the mate-
rial’s internal structure by examining the degree to which the
state of the electron is unperturbed. However, the experimen-
tal realization of such a method has so far been prevented by
the difficulties of achieving a satisfactory level of the required
coupling. Even the slightest discrepancies can cause OAM-
carrying electron beams to become unstable upon propagat-
ing through the material [46]. Fortunately, not all charac-
terization methods based on the elastic scattering of OAM-
carrying electrons rely on their coupling with a material’s
channeling states. For instance, some rely on measuring the
phase acquired by OAM-carrying electrons upon propagating
through a longitudinal magnetic field to essentially character-
ize the latter [47, 48]. Another recent example consists of
using OAM-carrying electrons to more easily characterize the
diffraction patterns of crystals defined by more complex sym-
metries [49]. Beyond this, there have also been proposals con-
cerning the application of exotic twisted electrons to impart
torque to nanoparticles [50] and to produce transition radia-
tion [51].

VII. SELF-ACCELERATING TWISTED ELECTRONS

The influence of magnetic fields on the phase structure
of electron wavefunctions undoubtedly provides a variety of
ways of both generating twisted electrons and using them to
characterize magnetic materials. As we have seen, other enti-
ties, such as a vector potential attributed to a vanishing mag-
netic field, can also influence the spatial structure of electron
wavepackets. In some cases, electron wavepackets can even
experience interesting phenomena in the absence of external
potentials. Such effects instead arise from the initial shape and
the evolution of the electron wavefunction itself.

In recent years, specially structured wavepackets designed
to experience a form of ‘self-acceleration’ have provided new
insight on the topic. Explicitly, ‘self-acceleration’ refers
to the apparent parabolic trajectory experienced by distinct
types of non-diffracting beams. In essence, the main fea-
tures of the beam experience a lateral parabolic shift upon
propagation, though the beam as a whole propagates along
a straight trajectory. In practice, however, the finite trans-
verse extent of wavepackets prevents them from indefinitely
having this distinct parabolic structure. Instead, wavepack-
ets will experience self-acceleration over a limited range un-
til they eventually succumb to diffraction. Electrons de-
fined by such self-accelerating wavepackets exist within non-
relativistic regimes [53] governed by the Schrödinger equa-
tion and have been experimentally generated [54]. The recent
development of self-accelerating solutions to the relativistic
Dirac equation [52] has also introduced the prospect of hav-
ing relativistic self-accelerating electron wavepackets defined
by a variety of new properties associated with special relativ-
ity. It has in fact been shown that self-accelerating solutions
of the potential-free Dirac equation [52] mimic the dynam-
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Figure 11. Inducing time dilation on a particle by shaping its wavepacket. Left: Probability density of a one-dimensional self-accelerated
Dirac wavepacket on a Minkowski diagram. Right: Space-time trajectory of a relativistic particle influenced by a force F = mc2/R.
In both cases, the entities experience identical hyperbolic trajectories in space-time, experience the same dilation (7 time periods for
the accelerated particles vs 9 time periods for a stationary particle), and acquire the same Aharonov-Bohm phase. Figure based on
reference [54].

longitudinal magnetic field to essentially characterize the
latter [47,48]. Another recent example consists of using
OAM-carrying electrons to more easily characterize the
diffraction patterns of crystals defined by more com-
plex symmetries [49]. Beyond this, there have also been
proposals concerning the application of exotic twisted
electrons to impart torque to nanoparticles [50] and to
produce transition radiation [51].

7. Self-accelerating twisted electrons

The influence of magnetic fields on the phase structure of
electron wavefunctions undoubtedly provides a variety
of ways of both generating twisted electrons and using
them to characterizemagneticmaterials. Aswehave seen,
other entities, such as a vector potential attributed to a
vanishing magnetic field, can also influence the spatial
structure of electronwavepackets. In some cases, electron
wavepackets can even experience interesting phenomena
in the absence of external potentials. Such effects instead
arise from the initial shape and the evolution of the elec-
tron wavefunction itself.

In recent years, specially structured wavepackets
designed to experience a form of ‘self-acceleration’ have
provided new insight on the topic. Explicitly, ‘self-
acceleration’ refers to the apparent parabolic trajectory
experienced by distinct types of non-diffracting beams.

In essence, the main features of the beam experience a
lateral parabolic shift uponpropagation, though thebeam
as a whole propagates along a straight trajectory. In prac-
tice, however, the finite transverse extent of wavepack-
ets prevents them from indefinitely having this distinct
parabolic structure. Instead, wavepackets will experience
self-accelerationover a limited rangeuntil they eventually
succumb to diffraction. Electrons defined by such self-
accelerating wavepackets exist within non-relativistic
regimes [52] governed by the Schrödinger equation and
have been experimentally generated [53]. The recent de-
velopment of self-accelerating solutions to the relativistic
Dirac equation [54] has also introduced the prospect of
having relativistic self-accelerating electron wavepackets
defined by a variety of new properties associated with
special relativity. It has in fact been shown that self-
accelerating solutions of the potential-free Dirac
equation [54] mimic the dynamics of a free-charge accel-
erating under the influence of an EM field, even though
no field is present. Such wavepackets can be designed
to display any effect induced by EM fields by only con-
trolling the initial conditions of the wave pattern. Most
interestingly,measurements taken along thewavepacket’s
trajectory cannot distinguish between a real force and this
virtual force, which is self-induced by the wavepacket
itself and is engineered through its initial conditions.

FIG. 11. Inducing time dilation on a particle by shaping its wavepacket. Left: Probability density of a one-dimensional self-accelerated Dirac
wavepacket on a Minkowski diagram. Right: Space-time trajectory of a relativistic particle influenced by a force F = mc2/R. In both cases,
the entities experience identical hyperbolic trajectories in space-time, experience the same dilation (7 time periods for the accelerated particles
vs 9 time periods for a stationary particle), and acquire the same Aharonov-Bohm phase. Figure based on reference [52].

ics of a free-charge accelerating under the influence of an EM
field, even though no field is present. Such wavepackets can
be designed to display any effect induced by EM fields by only
controlling the initial conditions of the wave pattern. Most
interestingly, measurements taken along the wavepacket’s tra-
jectory cannot distinguish between a real force and this virtual
force, which is self-induced by the wavepacket itself and is en-
gineered through its initial conditions. The measurable effects
of this virtual force are real by all measurable quantities.

Another interesting property defining these self-
accelerating wavepackets concerns their phase accumulation
χ along the wave’s trajectory. This quantity is proportional
to the proper time of an equivalently accelerating particle,
thus implying that the phase difference following this accel-
eration is equivalent to the relative time dilation between the
accelerating particle and a stationary one. In practice, this
relation could prospectively be used to prolong the lifetime
of decaying particles by structuring their wavefunction into a
self-accelerating wave [52]. The principles of these ideas are
depicted in Figure 11.

In addition to these relativistic effects, the analogy be-
tween self-accelerating wavepackets and accelerating parti-
cles is of fundamental interest from an electrodynamics per-
spective. For instance, these similarities can lead one to
question whether an electron wavefunction would emit radi-
ation if it is shaped to self-accelerate in potential-free vac-
uum. While an accelerating charged particle emits Larmor
(or Bremsstrahlung) radiation, it remained an open question
to characterize the electromagnetic field accompanying self-

accelerating particles. Their far-field behaviour is especially
intriguing since it may define a regime somewhere in between
the traditional non-radiating near-field and the radiating far-
field while being neither – not carrying energy in the form of
radiation at the far-field, yet not decaying quickly enough to
be considered part of the charged particle’s near-field.

Some of the exotic features of self-accelerating Dirac elec-
trons can also be extended to other self-accelerating systems.
Much like how several electron wavefunctions [7, 9, 13, 15–
18, 23, 54] are defined by features similar to those of opti-
cal beams [56–58], these self-accelerating features can exist
in virtually any linear and nonlinear wave system in nature.
For instance, such systems include plasmon waves [59–64]
(some solving the full Maxwell equations [55, 65]), sound
waves [66, 67], surface waves [68], waves on membranes, and
even gravitational waves. All of these waves share a common
attribute. Namely, they are part of a wider family of shape-
preserving beams and wavepackets that are eigenfunctions of
Lorentz operators (boosts/rotations), i.e. solutions that are in-
variant under the operation of any Lorentz transform. Gener-
ally, any wave system will have its shape-preserving solutions
fully described by finding the eigenfunctions of its symmetry
operators (see Figure 12). Consequently, the above phenom-
ena, such as the accumulated phases of self-accelerating par-
ticles, can be observed in various settings, e.g. optical waves
in honeycomb photonic lattices [69] or in hyperbolic metama-
terials [70], and matter waves in honeycomb optical lattices
formed by the interference of laser beams.

In the specific case of electron wavefunctions, the self-
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Figure 12. Families of shape-preserving wavepackets as eigenstates of symmetry operators. (a) The profile of a 2+1D accelerating
electron Dirac wavepacket equation in three consequent times; the wavepacket experiences length contraction, maintaining its profile
up to scaling. The glowing line marks the ct point in the plot. (b) The profile and the Poynting vector of an accelerating solution to
Maxwell’s equations, exhibiting circular self-bending of nearly 180◦ (figure from [55]); also equivalent to that of the massless Dirac
equation of a spin 1 particle. (c) Relativistic spinless accelerating wavepackets in 2+1D (two spatial dimensions and time) and 3+1D
(three spatial dimensions and time).

The measurable effects of this virtual force are real by
all measurable quantities.

Another interesting property defining these self-
accelerating wavepackets concerns their phase accumu-
lation χ along the wave’s trajectory. This quantity is
proportional to the proper time of an equivalently accel-
erating particle, thus implying that the phase difference
following this acceleration is equivalent to the relative
time dilation between the accelerating particle and a sta-
tionary one. In practice, this relation could prospectively
be used to prolong the lifetime of decaying particles by
structuring their wavefunction into a self-accelerating
wave [54]. The principles of these ideas are depicted in
Figure 11.

In addition to these relativistic effects, the analogy
between self-accelerating wavepackets and accelerating
particles is of fundamental interest from an electrody-
namics perspective. For instance, these similarities can
lead one to question whether an electron wavefunction
would emit radiation if it is shaped to self-accelerate
in potential-free vacuum. While an accelerating charged
particle emits Larmor (or Bremsstrahlung) radiation, it
remained an open question to characterize the electro-
magnetic field accompanying self-accelerating particles.

Their far-field behaviour is especially intriguing since it
may define a regime somewhere in between the tradi-
tional non-radiating near-field and the radiating far-field
while being neither – not carrying energy in the form of
radiation at the far-field, yet not decaying quickly enough
to be considered part of the charged particle’s near-field.

Some of the exotic features of self-accelerating Dirac
electrons can also be extended to other self-accelerating
systems. Much like how several electron wavefunctions
[7,9,13,15–18,23,53] are defined by features similar to
those of optical beams [56–58], these self-accelerating
features can exist in virtually any linear and nonlinear
wave system in nature. For instance, such systems include
plasmon waves [59–64] (some solving the full Maxwell
equations [55,65]), sound waves [66,67], surface waves
[68], waves onmembranes, and even gravitational waves.
All of these waves share a common attribute. Namely,
they are part of a wider family of shape-preserving beams
and wavepackets that are eigenfunctions of Lorentz
operators (boosts/rotations), i.e. solutions that are
invariant under the operation of any Lorentz transform.
Generally, anywave systemwill have its shape-preserving
solutions fully described by finding the eigenfunctions of
its symmetry operators (see Figure 12). Consequently,

FIG. 12. Families of shape-preserving wavepackets as eigenstates of symmetry operators. (a) The profile of a 2+1D accelerating electron
Dirac wavepacket equation in three consequent times; the wavepacket experiences length contraction, maintaining its profile up to scaling.
The glowing line marks the ct point in the plot. (b) The profile and the Poynting vector of an accelerating solution to Maxwell’s equations,
exhibiting circular self-bending of nearly 180o (figure from [55]); also equivalent to that of the massless Dirac equation of a spin 1 particle. (c)
Relativistic spinless accelerating wavepackets in 2+1D (two spatial dimensions and time) and 3+1D (three spatial dimensions and time).

accelerating Dirac wavepackets described above are eigen-
functions of boost operators, and in a complete analogy,
Bessel beams and other vortex beams are exactly eigenfunc-
tions of rotation operators. Hence, we can expect other fami-
lies of shaped particles such as twisted (OAM-carrying) elec-
trons, to also exhibit similar forms of ‘accumulated phases’
and ‘extended lifetimes’ when taken to their relativistic lim-
its.

VIII. CONCLUSION

The recent surge in experimental works pertaining to the
generation of twisted electrons, the framework of which was
laid by previous theoretical investigations, has motivated a
vast amount of studies related to the measurement of elec-
tron OAM and the interaction of charged wavepackets with
electromagnetic fields. As discussed in the last section of
this work, analogues to these types of interactions caused by
purely relativistic effects have also been recently put forward,
thus introducing a wide range of exciting phenomena. Such
relativistic analyses result in wavefunctions that have com-
pletely different structures than their nonrelativistic counter-

parts [23, 71–74] and hence, in some cases, affect the nature
of their quantum dynamics. For instance, the presence of spin-
to-orbit coupling in relativistic electron wavepackets directly
affects the description of its coiling probability density cur-
rent. The theoretical prediction of these relativistic effects
thereby opens a new frontier in the field of twisted electrons.
Namely, they should first motivate the inception of several ex-
perimental works aiming to detect these effects under rela-
tivistic configurations. Should these works prove successful,
they will undoubtebly encourage the reformulation of several
current applications relying on OAM-carrying electrons while
also stimulating the emergence of several new proposals rely-
ing on the distinct behaviour of relativistic wavepackets.
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P. Novák, E. Carlino, M. Fabrizioli, G. Panaccione, and
G. Rossi, Nature 441, 486 (2006).

[40] J. Rusz, S. Muto, J. Spiegelberg, R. Adam, K. Tatsumi, D. E.
Bürgler, P. M. Oppeneer, and C. M. Schneider, Nature Com-
munications 7, 12672 (2016).
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